Patents by Inventor Marcelo Lamego

Marcelo Lamego has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9750443
    Abstract: A physiological sensor has light emitting sources, each activated by addressing at least one row and at least one column of an electrical grid. The light emitting sources are capable of transmitting light of multiple wavelengths and a detector is responsive to the transmitted light after attenuation by body tissue.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: September 5, 2017
    Assignee: CERCACOR LABORATORIES, INC.
    Inventors: Robert Smith, David Dalke, Ammar Al-Ali, Mohamed Diab, Marcelo Lamego
  • Patent number: 9717425
    Abstract: A noninvasive physiological sensor for measuring one or more physiological parameters of a medical patient can include a bump interposed between a light source and a photodetector. The bump can be placed in contact with body tissue of a patient and thereby reduce a thickness of the body tissue. As a result, an optical pathlength between the light source and the photodetector can be reduced. In addition, the sensor can include a heat sink that can direct heat away from the light source. Moreover, the sensor can include shielding in the optical path between the light source and the photodetector. The shielding can reduce noise received by the photodetector.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: August 1, 2017
    Assignee: Masimo Corporation
    Inventors: Massi Joe E. Kiani, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Jeroen Poeze, Ferdyan Lesmana, Greg Olsen
  • Publication number: 20170196470
    Abstract: A method of determining blood pressure measurements includes inflating a cuff, receiving an indication of pressure inside the cuff during inflation, determining a blood pressure based at least in part on the received indication, assigning a confidence level to the blood pressure, and determining whether the confidence level satisfies a threshold confidence level. Based at least on a determination that the confidence level satisfies a threshold confidence level, the method can include causing a display to display the blood pressure. Based at least on a determination that the confidence level does not satisfy a threshold confidence level, the method can include deflating the cuff, receiving an indication of pressure inside the cuff during deflation, determining another blood pressure, and causing a display to display a blood pressure.
    Type: Application
    Filed: December 22, 2016
    Publication date: July 13, 2017
    Inventors: Marcelo Lamego, Massi Joe E. Kiani, Ken Lam, Cristiano Dalvi, Hung The Vo
  • Patent number: 9668680
    Abstract: Embodiments of the present disclosure include an emitter driver configured to be capable of addressing substantially 2N nodes with N cable conductors configured to carry activation instructions from a processor. In an embodiment, an address controller outputs an activation instruction to a latch decoder configured to supply switch controls to activate particular LEDs of a light source.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: June 6, 2017
    Assignee: MASIMO CORPORATION
    Inventors: Johannes Bruinsma, Cristiano Dalvi, Marcelo Lamego
  • Patent number: 9649054
    Abstract: A blood pressure measurement system that non-invasively determines an individual's blood pressure can include a noninvasive blood pressure sensor having an optical sensor and a motion sensor. The optical sensor can provide a photoplethysmograph signal obtained from a patient to a processor. The motion sensor can provide a motion signal to the processor responsive to motion of the patient. In one embodiment, the processor calculates or estimates the blood pressure of the patient based on the photoplethysmograph signal and the motion signal. Advantageously, the system can obtain this blood pressure measurement without an occlusive cuff, thereby reducing patient discomfort. In other implementations, the processor calculates a blood pressure-related parameter from the photoplethysmograph and motion signal. The processor can occasionally trigger an occlusive cuff measurement as this parameter changes, thereby reducing the frequency of occlusive cuff measurements.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: May 16, 2017
    Assignee: CERCACOR LABORATORIES, INC.
    Inventors: Marcelo Lamego, Massi Joe E. Kiani, Ken Lam, Cristiano Dalvi, Hung Vo
  • Patent number: 9591975
    Abstract: A noninvasive physiological sensor for measuring one or more physiological parameters of a medical patient can include a bump interposed between a light source and a photodetector. The bump can be placed in contact with body tissue of a patient and thereby reduce a thickness of the body tissue. As a result, an optical pathlength between the light source and the photodetector can be reduced. In addition, the sensor can include a heat sink that can direct heat away from the light source. Moreover, the sensor can include shielding in the optical path between the light source and the photodetector. The shielding can reduce noise received by the photodetector.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: March 14, 2017
    Assignee: MASIMO CORPORATION
    Inventors: Cristiano Dalvi, Marcelo Lamego, Sean Merritt, Hung Vo, Johannes Bruinsma, Jeroen Poeze, Ferdyan Lesmana, Greg Olsen, Massi Joe E. Kiani
  • Patent number: 9549696
    Abstract: Confidence in a physiological parameter is measured from physiological data responsive to the intensity of multiple wavelengths of optical radiation after tissue attenuation. The physiological parameter is estimated based upon the physiological data. Reference data clusters are stored according to known values of the physiological parameter. At least one of the data clusters is selected according to the estimated physiological parameter. The confidence measure is determined from a comparison of the selected data clusters and the physiological data.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: January 24, 2017
    Assignee: CERCACOR LABORATORIES, INC.
    Inventors: Marcelo Lamego, Mohamed K. Diab, Ammar Al-Ali
  • Patent number: 9532722
    Abstract: A patient monitoring system includes an inflatable cuff, a gas reservoir containing a compressed gas, and a sensor. When the inflatable cuff is coupled to a wearer, the gas reservoir supplies gas to the inflatable cuff to inflate the inflatable cuff via gas pathways. As the inflatable cuff inflates, a patient monitor can receive blood pressure data from the sensor and use the blood pressure data to determine the blood pressure of the wearer. The patient monitor can also receive blood pressure data during deflation of the inflatable cuff to determine the blood pressure of the wearer.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: January 3, 2017
    Assignee: MASIMO CORPORATION
    Inventors: Marcelo Lamego, Massi Joe E. Kiani, Ken Lam, Cristiano Dalvi, Hung Vo
  • Patent number: 9510779
    Abstract: The present disclosure relates to methods, devices, and systems for measuring a blood analyte, such as glucose. The disclosure relates more specifically to the use in such methods, devices, and systems of one or more accelerometers to aid in the collection of data, operation of the device, filtering, and other uses. In some embodiments, the accelerometers are three-dimensional accelerometers. An accelerometer can be used in conjunction with analyte monitoring that may be performed with infrared, near infrared, or other wavelength spectroscopy. The accelerometer may allow a monitoring instrument to expect noisy measurement data, indicate positioning of a measurement site for improved expected results, indicate position of the instrument, or help the user properly place or control the instrument.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: December 6, 2016
    Assignee: MASIMO CORPORATION
    Inventors: Jeroen Poeze, Johannes Bruinsma, Marcelo Lamego
  • Publication number: 20160166183
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Application
    Filed: December 28, 2015
    Publication date: June 16, 2016
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani
  • Publication number: 20160166188
    Abstract: Embodiments of the present disclosure include an emitter driver configured to be capable of addressing substantially 2N nodes with N cable conductors configured to carry activation instructions from a processor. In an embodiment, an address controller outputs an activation instruction to a latch decoder configured to supply switch controls to activate particular LEDs of a light source.
    Type: Application
    Filed: November 16, 2015
    Publication date: June 16, 2016
    Inventors: Johannes Bruinsma, Cristiano Dalvi, Marcelo Lamego
  • Publication number: 20160073967
    Abstract: Confidence in a physiological parameter is measured from physiological data responsive to the intensity of multiple wavelengths of optical radiation after tissue attenuation. The physiological parameter is estimated based upon the physiological data. Reference data clusters are stored according to known values of the physiological parameter. At least one of the data clusters is selected according to the estimated physiological parameter. The confidence measure is determined from a comparison of the selected data clusters and the physiological data.
    Type: Application
    Filed: September 21, 2015
    Publication date: March 17, 2016
    Inventors: Marcelo Lamego, Mohamed K. Diab, Ammar Al-Ali
  • Patent number: 9277880
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: March 8, 2016
    Assignee: MASIMO CORPORATION
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani
  • Patent number: 9186102
    Abstract: Embodiments of the present disclosure include an emitter driver configured to be capable of addressing substantially 2N nodes with N cable conductors configured to carry activation instructions from a processor. In an embodiment, an address controller outputs an activation instruction to a latch decoder configured to supply switch controls to activate particular LEDs of a light source.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: November 17, 2015
    Assignee: CERCACOR LABORATORIES, INC.
    Inventors: Johannes Bruinsma, Cristiano Dalvi, Marcelo Lamego
  • Patent number: 9167995
    Abstract: Confidence in a physiological parameter is measured from physiological data responsive to the intensity of multiple wavelengths of optical radiation after tissue attenuation. The physiological parameter is estimated based upon the physiological data. Reference data clusters are stored according to known values of the physiological parameter. At least one of the data clusters is selected according to the estimated physiological parameter. The confidence measure is determined from a comparison of the selected data clusters and the physiological data.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: October 27, 2015
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Marcelo Lamego, Mohamed K. Diab, Ammar Al-Ali
  • Publication number: 20150230755
    Abstract: A sensor cartridge according to embodiments of the disclosure is capable of being used with a non-invasive physiological sensor. Certain embodiments of the sensor cartridge protect the sensor from damage, such as damage due to repeated use, reduce the need for sensor sanitization, or both. Further, embodiments of the sensor cartridge are positionable on the user before insertion in the sensor and allow for improved alignment of the treatment site with the sensor. In addition, the sensor cartridge of certain embodiments of the disclosure can be configured to allow a single sensor to comfortably accommodate treatment sites of various sizes such as for both adult and pediatric applications.
    Type: Application
    Filed: February 19, 2015
    Publication date: August 20, 2015
    Inventors: Ammar Al-Ali, Marcelo Lamego, Jim Litchfield, Gregory A. Olsen
  • Publication number: 20150133755
    Abstract: A physiological sensor has light emitting sources, each activated by addressing at least one row and at least one column of an electrical grid. The light emitting sources are capable of transmitting light of multiple wavelengths and a detector is responsive to the transmitted light after attenuation by body tissue.
    Type: Application
    Filed: August 29, 2014
    Publication date: May 14, 2015
    Inventors: Robert Smith, David Dalke, Ammar Al-Ali, Mohamed Diab, Marcelo Lamego
  • Patent number: 8989831
    Abstract: A sensor cartridge according to embodiments of the disclosure is capable of being used with a non-invasive physiological sensor. Certain embodiments of the sensor cartridge protect the sensor from damage, such as damage due to repeated use, reduce the need for sensor sanitization, or both. Further, embodiments of the sensor cartridge are positionable on the user before insertion in the sensor and allow for improved alignment of the treatment site with the sensor. In addition, the sensor cartridge of certain embodiments of the disclosure can be configured to allow a single sensor to comfortably accommodate treatment sites of various sizes such as for both adult and pediatric applications.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: March 24, 2015
    Assignee: Masimo Corporation
    Inventors: Ammar Al-Ali, Marcelo Lamego, Jim Litchfield, Gregory A. Olsen
  • Patent number: 8965471
    Abstract: A tissue profile wellness monitor measures a physiological parameter, generates a tissue profile, defines limits and indicates when the tissue profile exceeds the defined limits. The physiological parameter is responsive to multiple wavelengths of optical radiation after attenuation by constituents of pulsatile blood flowing within a tissue site. The tissue profile is responsive to the physiological parameter. The limits are defined for at least a portion of the tissue profile.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: February 24, 2015
    Assignee: Cercacor Laboratories, Inc.
    Inventor: Marcelo Lamego
  • Publication number: 20150012231
    Abstract: A system is disclosed for detecting and calculating the level of ambient and/or environmental noise, such as electromagnetic interference generated by electric power lines, ambient lights, light dimmers, television or computer displays, power supplies or transformers, and medical equipment. In some embodiments, the system performs frequency analysis on the interference signal detected by light photodetectors and determines the power of the interference signal concentrated in the analyzed frequency bands. The worst-case interference level can be determined by selecting the maximum from the computed power values. In some embodiments, the determined interference signal power can be compared with the noise tolerance of a patient monitoring system configured to reliably and noninvasively detect physiological parameters of a user. The results of the comparison can be presented to the user audio-visually. In some embodiments, the system can be used to perform spot check measurements of electromagnetic interference.
    Type: Application
    Filed: June 5, 2014
    Publication date: January 8, 2015
    Inventors: Jeroen Poeze, Jesse Chen, Mathew Paul, Marcelo Lamego, Massi Joe E. Kiani