Patents by Inventor Marcelo Lamego

Marcelo Lamego has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140121482
    Abstract: The present disclosure relates to a sensor having a set of photodetectors that are arranged at various locations to enable the measurement of blood glucose. The photodetectors are arranged across multiple locations. For example, the detector may comprise multiple photodetector arrays that are arranged to have a sufficient difference in mean path length to allow for noise cancellation and noise reduction. Walls may be used in the detector to separate individual photodetectors and prevent mixing of detected optical radiation between the different locations on the measurement site. A window may also be employed to facilitate the passing of optical radiation at various wavelengths for measuring glucose in the tissue.
    Type: Application
    Filed: October 25, 2013
    Publication date: May 1, 2014
    Applicant: CERCACOR LABORATORIES, INC.
    Inventors: Sean Merritt, Marcelo Lamego, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Jeroen Poeze, Ferdyan Lesmana, Massi Joe E. Kiani
  • Patent number: 8688183
    Abstract: Embodiments of the present disclosure include an emitter driver configured to be capable of addressing substantially 2N nodes with N cable conductors configured to carry activation instructions from a processor. In an embodiment, an address controller outputs an activation instruction to a latch decoder configured to supply switch controls to activate particular LEDs of a light source.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: April 1, 2014
    Assignee: Ceracor Laboratories, Inc.
    Inventors: Johannes Bruinsma, Cristiano Dalvi, Marcelo Lamego
  • Publication number: 20140066783
    Abstract: A noninvasive physiological sensor for measuring one or more physiological parameters of a medical patient can include a bump interposed between a light source and a photodetector. The bump can be placed in contact with body tissue of a patient and thereby reduce a thickness of the body tissue. As a result, an optical pathlength between the light source and the photodetector can be reduced. In addition, the sensor can include a heat sink that can direct heat away from the light source. Moreover, the sensor can include shielding in the optical path between the light source and the photodetector. The shielding can reduce noise received by the photodetector.
    Type: Application
    Filed: November 1, 2013
    Publication date: March 6, 2014
    Inventors: Massi Joe E. Kiani, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Jeroen Poeze, Ferydan Lesmana, Greg Olsen
  • Publication number: 20140051953
    Abstract: This disclosure describes, among other features, systems and methods for customizing calibration curves, parameter algorithms, and the like to individual users. An initial calibration curve generated based on a population can be used as a starting point in an algorithm for measuring a physiological parameter such as glucose. The measurement algorithm can determine one or more initial measurement values for a user based on the initial calibration curve. In certain embodiments, one or more alternative measurements, such as invasive or minimally invasive measurements, can periodically or sporadically be input into the measurement algorithm. The algorithm can use the alternative measurements to adapt the calibration curve to the individual. As a result, measurements for the individual can more accurately reflect the individual's actual parameter values.
    Type: Application
    Filed: October 28, 2013
    Publication date: February 20, 2014
    Applicant: CERCACOR LABORATORIES, INC.
    Inventors: Marcelo Lamego, Sean Merritt, Massi Joe E. Kiani
  • Patent number: 8630691
    Abstract: The present disclosure relates to an interface for a noninvasive glucose sensor that comprises a front-end adapted to receive an input signals from optical detectors and provide corresponding digital signals. In one embodiment, the front-end comprises switched capacitor circuits that are capable of handling multiple streams signals from the optical detectors. In another embodiment, the front-end comprises transimpedance amplifiers that are capable of handling multiple streams of input signals. In this embodiment, the transimpedance amplifier may be configured based on its own characteristics, such as its impedance, the impedance of the photodiodes to which it is coupled, and the number of photodiodes to which it is coupled.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: January 14, 2014
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Jeroen Poeze, Ferdyan Lesmana, Massi Joe E. Kiani
  • Publication number: 20130317370
    Abstract: A noninvasive physiological sensor for measuring one or more physiological parameters of a medical patient can include a bump interposed between a light source and a photodetector. The bump can be placed in contact with body tissue of a patient and thereby reduce a thickness of the body tissue. As a result, an optical pathlength between the light source and the photodetector can be reduced. In addition, the sensor can include a heat sink that can direct heat away from the light source. Moreover, the sensor can include shielding in the optical path between the light source and the photodetector. The shielding can reduce noise received by the photodetector.
    Type: Application
    Filed: May 6, 2013
    Publication date: November 28, 2013
    Applicant: CERCACOR LABORATORIES, INC.
    Inventors: Cristiano Dalvi, Marcelo Lamego, Sean Merritt, Hung Vo, Johannes Bruinsma, Jeroen Poeze, Ferydan Lesmana, Greg Olsen, Massi Joe E. Kiani
  • Publication number: 20130317327
    Abstract: A physiological sensor has light sources arranged in one or more rows and one or more columns. Each light source is activated by addressing at least one row and at least one column. The light sources are capable of transmitting light of multiple wavelengths and a detector is responsive to the transmitted light after attenuation by body tissue.
    Type: Application
    Filed: July 8, 2013
    Publication date: November 28, 2013
    Applicant: CERCACOR LABORATORIES, INC.
    Inventors: Ammar Al-Ali, Robert Smith, David Dalke, Mohamed Diab, Marcelo Lamego
  • Patent number: 8577431
    Abstract: A noninvasive physiological sensor for measuring one or more physiological parameters of a medical patient can include a bump interposed between a light source and a photodetector. The bump can be placed in contact with body tissue of a patient and thereby reduce a thickness of the body tissue. As a result, an optical pathlength between the light source and the photodetector can be reduced. In addition, the sensor can include a heat sink that can direct heat away from the light source. Moreover, the sensor can include shielding in the optical path between the light source and the photodetector. The shielding can reduce noise received by the photodetector.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: November 5, 2013
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Jeroen Poeze, Ferdyan Lesmana, Greg Olsen, Massi Joe E. Kiani
  • Patent number: 8571618
    Abstract: This disclosure describes, among other features, systems and methods for customizing calibration curves, parameter algorithms, and the like to individual users. An initial calibration curve generated based on a population can be used as a starting point in an algorithm for measuring a physiological parameter such as glucose. The measurement algorithm can determine one or more initial measurement values for a user based on the initial calibration curve. In certain embodiments, one or more alternative measurements, such as invasive or minimally invasive measurements, can periodically or sporadically be input into the measurement algorithm. The algorithm can use the alternative measurements to adapt the calibration curve to the individual. As a result, measurements for the individual can more accurately reflect the individual's actual parameter values.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: October 29, 2013
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Marcelo Lamego, Sean Merritt, Massi Joe E. Kiani
  • Patent number: 8570503
    Abstract: A noninvasive physiological sensor for measuring one or more physiological parameters of a medical patient can include a heat sink that can direct heat away from the light source.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: October 29, 2013
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Hung Vo, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Johannes Bruinsma, Jeroen Poeze, Ferdyan Lesmana, Greg Olsen, Massi Joe E. Kiani
  • Publication number: 20130278430
    Abstract: A system is disclosed for detecting and calculating the level of ambient and/or environmental noise, such as electromagnetic interference generated by electric power lines, ambient lights, light dimmers, television or computer displays, power supplies or transformers, and medical equipment. In some embodiments, the system performs frequency analysis on the interference signal detected by light photodetectors and determines the power of the interference signal concentrated in the analyzed frequency bands. The worst-case interference level can be determined by selecting the maximum from the computed power values. In some embodiments, the determined interference signal power can be compared with the noise tolerance of a patient monitoring system configured to reliably and non-invasively detect physiological parameters of a user. The results of the comparison can be presented to the user audio-visually. In some embodiments, the system can be used to perform spot check measurements of electromagnetic interference.
    Type: Application
    Filed: June 14, 2013
    Publication date: October 24, 2013
    Inventors: Jeroen POEZE, Jesse CHEN, Mathew Paul, Marcelo Lamego, Massi Joe E. Kiani
  • Patent number: 8515509
    Abstract: The present disclosure relates to an emitter that is suitable for a noninvasive blood constituent sensor. The emitter is configured as a point optical source that comprises a plurality of LEDs that emit a sequence of pulses of optical radiation across a spectrum of wavelengths. In some embodiments, the plurality of sets of optical sources may each comprise at least one top-emitting LED and at least one super luminescent LED. In some embodiments, the emitter comprises optical sources that transmit optical radiation in the infrared or near-infrared wavelengths suitable for detecting glucose. In order to achieve the desired SNR for detecting analytes like glucose, the emitter may be driven using a progression from low power to higher power. In addition, the emitter may have its duty cycle modified to achieve a desired SNR.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: August 20, 2013
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Johannes Bruinsma, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Jeroen Poeze, Ferdyan Lesmana, Massi Joe E. Kiani
  • Patent number: 8483787
    Abstract: A physiological sensor includes an electrical grid to activate one or more light emitters by addressing at least one row conductor and at least one column conductor. Each light emitter includes a positive terminal and a negative terminal. The physiological sensor includes a first light emitter and a second light emitter. A first contact is communicatively coupled with the positive terminal of the first light emitter, the negative terminal of the second light emitter, a first row conductor, and a first column conductor. A second contact is communicatively coupled with the negative terminal of the first light emitter, the positive terminal of the second light emitter, a second row conductor, and a second column conductor. The first light emitter is activated by addressing the first row conductor and the second column conductor. The second light emitter is activated by addressing the second row conductor and the first column conductor.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: July 9, 2013
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Ammar Al-Ali, Robert Smith, David Dalke, Mohamed Diab, Marcelo Lamego
  • Patent number: 8471713
    Abstract: A system is disclosed for detecting and calculating the level of ambient and/or environmental noise, such as electromagnetic interference generated by electric power lines, ambient lights, light dimmers, television or computer displays, power supplies or transformers, and medical equipment. In some embodiments, the system performs frequency analysis on the interference signal detected by light photodetectors and determines the power of the interference signal concentrated in the analyzed frequency bands. The worst-case interference level can be determined by selecting the maximum from the computed power values. In some embodiments, the determined interference signal power can be compared with the noise tolerance of a patient monitoring system configured to reliably and non-invasively detect physiological parameters of a user. The results of the comparison can be presented to the user audio-visually. In some embodiments, the system can be used to perform spot check measurements of electromagnetic interference.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: June 25, 2013
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Jeroen Poeze, Jesse Chen, Mathew Paul, Marcelo Lamego, Massi Joe E. Kiani
  • Patent number: 8437825
    Abstract: A noninvasive physiological sensor for measuring one or more physiological parameters of a medical patient can include a bump interposed between a light source and a photodetector. The bump can be placed in contact with body tissue of a patient and thereby reduce a thickness of the body tissue. As a result, an optical pathlength between the light source and the photodetector can be reduced. In addition, the sensor can include a heat sink that can direct heat away from the light source. Moreover, the sensor can include shielding in the optical path between the light source and the photodetector. The shielding can reduce noise received by the photodetector.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: May 7, 2013
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Cristiano Dalvi, Marcelo Lamego, Sean Merritt, Hung Vo, Johannes Bruinsma, Jeroen Poeze, Ferdyan Lesmana, Greg Olsen, Massi Joe E. Kiani
  • Patent number: 8428967
    Abstract: A spot check credit system advantageously includes various embodiments for obtaining authorization or payment for each measurement, groups of measurements, times of measurement or the like. In an embodiment, the system utilizes a server that communicates web pages over a computer network. In an embodiment, the system utilizes a digital communication device such as a photocommunicative key.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: April 23, 2013
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Gregory A. Olsen, Marcelo Lamego, Cristiano Dalvi, Johannes Bruinsma, Jeroen Poeze, Massi Joe E. Kiani
  • Patent number: 8385996
    Abstract: A physiological sensor is adapted to removably attach an emitter assembly and a detector assembly to a fingertip. The emitter assembly is adapted to transmit optical radiation having multiple wavelengths into fingertip tissue. The detector assembly is adapted to receive the optical radiation after attenuation by the fingertip tissue. The sensor has a first shell and a second shell hinged to the first shell. A spring is disposed between the shells and urges the shells together. An emitter pad is fixedly attached to the first shell and configured to retain the emitter assembly. A detector pad is fixedly attached to the second shell and configured to retain the detector assembly. A detector aperture is defined within the detector pad and adapted to pass optical radiation to the detector assembly. A contour is defined along the detector pad and generally shaped to conform to a fingertip positioned over the detector aperture.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: February 26, 2013
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Robert Smith, David Dalke, Ammar Al-Ali, Mohamed Diab, Marcelo Lamego
  • Publication number: 20130046204
    Abstract: A modulated physiological sensor is a noninvasive device responsive to a physiological reaction of a living being to an internal or external perturbation that propagates to a skin surface area. The modulated physiological sensor has a detector configured to generate a signal responsive to the physiological reaction. A modulator varies the coupling of the detector to the skin so as to at least intermittently maximize the detector signal. A monitor controls the modulator and receives an effectively amplified detector signal, which is processed to calculate a physiological parameter indicative of the physiological reaction.
    Type: Application
    Filed: August 13, 2012
    Publication date: February 21, 2013
    Applicant: CERCACOR LABORATORIES, INC.
    Inventors: Marcelo Lamego, Cristiano Dalvi, Hung Vo
  • Publication number: 20130041591
    Abstract: In a physiological sensor that estimates a true parameter value by providing a predicted parameter value, multiple measurements are taken to increase the accuracy of the predicted parameter value. The sensor can be reapplied between measurements to decrease the probability of an erroneous prediction caused by sensor misplacement. Some measurements can be discarded before calculating a predicted parameter value. The physiological sensor can have a plurality of modes, with one of the modes corresponding to multiple measurement process.
    Type: Application
    Filed: July 13, 2012
    Publication date: February 14, 2013
    Applicant: CERCACOR LABORATORIES, INC.
    Inventor: Marcelo Lamego
  • Patent number: 8374665
    Abstract: A tissue profile wellness monitor measures a physiological parameter, generates a tissue profile, defines limits and indicates when the tissue profile exceeds the defined limits. The physiological parameter is responsive to multiple wavelengths of optical radiation after attenuation by constituents of pulsatile blood flowing within a tissue site. The tissue profile is responsive to the physiological parameter. The limits are defined for at least a portion of the tissue profile.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: February 12, 2013
    Assignee: Cercacor Laboratories, Inc.
    Inventor: Marcelo Lamego