Patents by Inventor Marco Pinter

Marco Pinter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12269172
    Abstract: Devices, systems, and methods for social behavior of a telepresence robot are disclosed herein. A telepresence robot includes a drive system configured to move the telepresence robot; a control system configured to control the drive system to drive the telepresence robot around a work area; an object detection system configured to determine that a first object encountered by the telepresence robot is a human; and a social path component configured to: determine a first lockout zone having a first radius around the human and a first comfort zone having a second radius around the human, the second radius being larger than the first radius; and instruct the control system to cause the telepresence robot to: avoid traveling through the first lockout zone; move at a first maximum speed within the first comfort zone; and move at a second maximum speed outside of the first comfort zone, wherein the second maximum speed is greater than the first maximum speed.
    Type: Grant
    Filed: May 3, 2024
    Date of Patent: April 8, 2025
    Assignees: Teladoc Health, Inc., iRobot Corporation
    Inventors: Marco Pinter, Fuji Lai, Daniel Steven Sanchez, James Ballantyne, David Bjorn Roe, Yulun Wang, Charles S. Jordan, Orjeta Taka, Cheuk Wah Wong
  • Patent number: 12260954
    Abstract: A secure, reliable telehealth delivery platform that also provides flexibility and scalability. The platform includes a plurality of geographically dispersed communication servers that facilitate communication sessions between remotely located patients and healthcare providers over a public communications network. The platform includes a connectivity server that manages access among users and locations. The platform also includes a monitoring server that monitors the health and usage of devices coupled to the network and proactively identifies issues requiring intervention before service interruptions occur.
    Type: Grant
    Filed: April 24, 2023
    Date of Patent: March 25, 2025
    Assignee: TELADOC HEALTH, INC.
    Inventors: Kevin Hanrahan, John Schentrup, Parixit Kaira, Marco Pinter, John Cody Herzog, Blair Whitney, Jonathan Southard
  • Publication number: 20250071236
    Abstract: A telepresence device may relay video, audio, and/or measurement data to a user operating a control device. A user interface may permit the user to quickly view and/or understand temporally and/or spatially disparate information. The telepresence device may pre-gather looped video of spatially disparate areas in an environment. A temporal control mechanism may start video playback at a desired point in a current or historical video segment. Notations may be associated with time spans in a video and recalled by capturing an image similar to a frame in the time span of the video. An area of interest may be selected and video containing the area of interest may be automatically found. Situational data may be recorded and used to recall video segments of interest. The telepresence device may synchronize video playback and movement. A series of videos may be recorded at predetermined time intervals to capture visually trending information.
    Type: Application
    Filed: February 19, 2024
    Publication date: February 27, 2025
    Inventors: Marco Pinter, Charles S. Jordan, Daniel Sanchez, Kevin Hanrahan, Kelton Temby, Christopher Lambrecht
  • Publication number: 20240416522
    Abstract: A remote controlled robot system that includes a robot and a remote control station that communicate through a communication network. Communication with the robot is limited by a firewall coupled to the communication network. A communication server establishes communication between the robot and the remote control station so that the station can send commands to the robot through the firewall.
    Type: Application
    Filed: August 26, 2024
    Publication date: December 19, 2024
    Inventor: Marco Pinter
  • Patent number: 12142351
    Abstract: A telepresence device may autonomously check patients. The telepresence device may determine the frequency of checking based on whether the patient has a risk factor. The telepresence device may include an image sensor, a thermal camera, a depth sensor, one or more systems for interacting with patients, or the like. The telepresence device may be configured to evaluate the patient's condition using the one or more sensors. The telepresence device may measure physiological characteristics using Eulerian video magnification, may detect pallor, fluid level, or fluid color, may detect thermal asymmetry, may determine a psychological state from body position or movement, or the like. The telepresence device may determine whether the patient is experiencing a potentially harmful condition, such as sepsis or stroke, and may trigger an alarm if so. To overcome alarm fatigue, the telepresence device may annoy a care provider until the care provider responds to an alarm.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: November 12, 2024
    Assignee: TELADOC HEALTH, INC.
    Inventors: Marco Pinter, Timothy C. Wright, H. Neal Reynolds, Fuji Lai, Yulun Wang
  • Patent number: 12138808
    Abstract: A robot system with a robot that has a camera and a remote control station that can connect to the robot. The connection can include a plurality of privileges. The system further includes a server that controls which privileges are provided to the remote control station. The privileges may include the ability to control the robot, joint in a multi-cast session and the reception of audio/video from the robot. The privileges can be established and edited through a manager control station. The server may contain a database that defines groups of remote control station that can be connected to groups of robots. The database can be edited to vary the stations and robots within a group. The system may also allow for connectivity between a remote control station at a user programmable time window.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: November 12, 2024
    Assignee: TELADOC HEALTH, INC.
    Inventors: John Cody Herzog, Blair Whitney, Yulun Wang, Charles S. Jordan, Marco Pinter
  • Publication number: 20240312476
    Abstract: A system for automated health condition scoring includes at least one communication interface to receive an audio stream and a video stream from an endpoint in proximity to a patient, at least two different artificial intelligence (“AI”) detectors to respectively process one or both of the audio stream and the video stream using machine learning to automatically determine at least two respective likelihoods of the patient having a health condition, an AI scorer to combine the at least two respective likelihoods of the health condition using machine learning to automatically determine a health condition score representing an overall likelihood of the patient having the health condition, and a display interface that displays an indication of the health condition score to a physician.
    Type: Application
    Filed: October 20, 2023
    Publication date: September 19, 2024
    Inventors: John O'Donovan, Pushkar Shukla, Paul C. McElroy, Sushil Bharati, Marco Pinter
  • Publication number: 20240286288
    Abstract: Devices, systems, and methods for social behavior of a telepresence robot are disclosed herein. A telepresence robot includes a drive system configured to move the telepresence robot; a control system configured to control the drive system to drive the telepresence robot around a work area; an object detection system configured to determine that a first object encountered by the telepresence robot is a human; and a social path component configured to: determine a first lockout zone having a first radius around the human and a first comfort zone having a second radius around the human, the second radius being larger than the first radius; and instruct the control system to cause the telepresence robot to: avoid traveling through the first lockout zone; move at a first maximum speed within the first comfort zone; and move at a second maximum speed outside of the first comfort zone, wherein the second maximum speed is greater than the first maximum speed.
    Type: Application
    Filed: May 3, 2024
    Publication date: August 29, 2024
    Inventors: Marco Pinter, Fuji Lai, Daniel Steven Sanchez, James Ballantyne, David Bjorn Roe, Yulun Wang, Charles S. Jordan, Orjeta Taka, Cheuk Wah Wong
  • Patent number: 11981034
    Abstract: Devices, systems, and methods for social behavior of a telepresence robot are disclosed herein. A telepresence robot may include a drive system, a control system, an object detection system, and a social behaviors component. The drive system is configured to move the telepresence robot. The control system is configured to control the drive system to drive the telepresence robot around a work area. The object detection system is configured to detect a human in proximity to the telepresence robot. The social behaviors component is configured to provide instructions to the control system to cause the telepresence robot to operate according to a first set of rules when a presence of one or more humans is not detected and operate according to a second set of rules when the presence of one or more humans is detected.
    Type: Grant
    Filed: March 22, 2023
    Date of Patent: May 14, 2024
    Assignees: TELADOC HEALTH, INC., IROBOT CORPORATION
    Inventors: Marco Pinter, Fuji Lai, Daniel Steven Sanchez, James Ballantyne, David Bjorn Roe, Yulun Wang, Charles S. Jordan, Orjeta Taka, Cheuk Wah Wong
  • Publication number: 20240136033
    Abstract: Automatically generating a structured medical note during a remote medical consultation using machine learning. A provider tele-presence device may receive audio from a medical provider. A medical documentation server may be coupled to the network. A machine learning network receives audio data from the provider tele-presence device, the machine learning network generating a structured medical note based on the received audio data, and wherein the structured medical note is stored in the medical documentation server in association with an identity of a patient.
    Type: Application
    Filed: January 1, 2024
    Publication date: April 25, 2024
    Inventors: Marco Pinter, Charles S. Jordan, Yulun Wang, Ole Eichhorn
  • Publication number: 20240087738
    Abstract: A telepresence robot may include a drive system, a control system, an imaging system, and a mapping module. The mapping module may access a plan view map of an area and tags associated with the area. In various embodiments, each tag may include tag coordinates and tag information, which may include a tag annotation. A tag identification system may identify tags within a predetermined range of the current position and the control system may execute an action based on an identified tag whose tag information comprises a telepresence robot action modifier. The telepresence robot may rotate an upper portion independent from a lower portion. A remote terminal may allow an operator to control the telepresence robot using any combination of control methods, including by selecting a destination in a live video feed, by selecting a destination on a plan view map, or by using a joystick or other peripheral device.
    Type: Application
    Filed: November 17, 2023
    Publication date: March 14, 2024
    Inventors: Yulun Wang, Charles S. Jordan, Tim Wright, Michael Chan, Marco Pinter, Kevin Hanrahan, Daniel Sanchez, James Ballantyne, Cody Herzog, Blair Whitney, Fuji Lai, Kelton Temby, Eben Christopher Rauhut, Justin H. Kearns, Cheuk Wah Wong, Timothy Sturtevant Farlow
  • Patent number: 11910128
    Abstract: A telepresence device may relay video, audio, and/or measurement data to a user operating a control device. A user interface may permit the user to quickly view and/or understand temporally and/or spatially disparate information. The telepresence device may pre-gather looped video of spatially disparate areas in an environment. A temporal control mechanism may start video playback at a desired point hi a current or historical video segment. Notations may be associated with time spans in a video and recalled by capturing an image similar to a frame in the time span of the video. An area of interest may be selected and video containing the area of interest may be automatically found. Situational data may be recorded and used to recall video segments of interest. The telepresence device may synchronize video playback and movement. A series of videos may be recorded at predetermined time intervals to capture visually trending information.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: February 20, 2024
    Assignee: TELADOC HEALTH, INC.
    Inventors: Marco Pinter, Charles S. Jordan, Daniel Sanchez, Kevin Hanrahan, Kelton Temby, Christopher Lambrecht
  • Patent number: 11862302
    Abstract: Automatically generating a structured medical note during a remote medical consultation using machine learning. A provider tele-presence device may receive audio from a medical provider. A medical documentation server may be coupled to the network. A machine learning network receives audio data from the provider tele-presence device, the machine learning network generating a structured medical note based on the received audio data, and wherein the structured medical note is stored in the medical documentation server in association with an identity of a patient.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: January 2, 2024
    Assignee: TELADOC HEALTH, INC.
    Inventors: Marco Pinter, Charles S. Jordan, Yulun Wang, Ole Eichhorn
  • Patent number: 11850757
    Abstract: A robotic system that is used in a tele-presence session. For example, the system can be used by medical personnel to examine, diagnose and prescribe medical treatment in the session. The system includes a robot that has a camera and is controlled by a remote station. The system further includes a storage device that stores session content data regarding the session. The data may include a video/audio taping of the session by the robot. The session content data may also include time stamps that allow a user to determine the times that events occurred during the session. The session content data may be stored on a server that accessible by multiple users. Billing information may be automatically generated using the session content data.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: December 26, 2023
    Assignee: TELADOC HEALTH, INC.
    Inventors: Timothy C. Wright, Fuji Lai, Marco Pinter, Yulun Wang
  • Publication number: 20230402194
    Abstract: A telemedicine system including a cart that allows for two-way audio/video conferencing between patients or local care providers and remote care providers or family members. The cart employs a modular design that allows its capabilities to be expanded to meet the needs of particular telemedicine applications. In addition, the cart provides thermal imaging and a user interface that allows local care provers to access various capabilities of the device while the device is not in session with a remote party.
    Type: Application
    Filed: August 28, 2023
    Publication date: December 14, 2023
    Inventors: John Celmins, Gary Douville, Daniel Sanchez, Marco Pinter, Charles S. Jordan, Yulun Wang
  • Patent number: 11830618
    Abstract: A telepresence robot may include a drive system, a control system, an imaging system, and a mapping module. The mapping module may access a plan view map of an area and tags associated with the area. In various embodiments, each tag may include tag coordinates and tag information, which may include a tag annotation. A tag identification system may identify tags within a predetermined range of the current position and the control system may execute an action based on an identified tag whose tag information comprises a telepresence robot action modifier. The telepresence robot may rotate an upper portion independent from a lower portion. A remote terminal may allow an operator to control the telepresence robot using any combination of control methods, including by selecting a destination in a live video feed, by selecting a destination on a plan view map, or by using a joystick or other peripheral device.
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: November 28, 2023
    Assignees: Teladoc Health, Inc., iRobot Corporation
    Inventors: Yulun Wang, Charles S. Jordan, Tim Wright, Michael Chan, Marco Pinter, Kevin Hanrahan, Daniel Sanchez, James Ballantyne, Cody Herzog, Blair Whitney, Fuji Lai, Kelton Temby, Eben Christopher Rauhut, Justin H. Kearns, Cheuk Wah Wong, Timothy Sturtevant Farlow
  • Patent number: 11787060
    Abstract: A robot system that includes a remote station and a robot face. The robot face includes a camera that is coupled to a monitor of the remote station and a monitor that is coupled to a camera of the remote station. The robot face and remote station also have speakers and microphones that are coupled together. The robot face may be coupled to a boom. The boom can extend from the ceiling of a medical facility. Alternatively, the robot face may be attached to a medical table with an attachment mechanism. The robot face and remote station allows medical personnel to provide medical consultation through the system.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: October 17, 2023
    Assignee: TELADOC HEALTH, INC.
    Inventors: Yulun Wang, Charles S. Jordan, Marco Pinter, Daniel Steven Sanchez, Kevin Hanrahan
  • Patent number: 11742094
    Abstract: A telemedicine system including a cart that allows for two-way audio/video conferencing between patients or local care providers and remote care providers or family members. The cart employs a modular design that allows its capabilities to be expanded to meet the needs of particular telemedicine applications. In addition, the cart provides thermal imaging and a user interface that allows local care provers to access various capabilities of the device while the device is not in session with a remote party.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: August 29, 2023
    Assignee: TELADOC HEALTH, INC.
    Inventors: John Celmins, Gary Douville, Daniel Sanchez, Marco Pinter, Charles S. Jordan, Yulun Wang
  • Publication number: 20230260635
    Abstract: A secure, reliable telehealth delivery platform that also provides flexibility and scalability. The platform includes a plurality of geographically dispersed communication servers that facilitate communication sessions between remotely located patients and healthcare providers over a public communications network. The platform includes a connectivity server that manages access among users and locations. The platform also includes a monitoring server that monitors the health and usage of devices coupled to the network and proactively identifies issues requiring intervention before service interruptions occur.
    Type: Application
    Filed: April 24, 2023
    Publication date: August 17, 2023
    Inventors: Kevin Hanrahan, John Schentrup, Parixit Kaira, Marco Pinter, John Cody Herzog, Blair Whitney, Jonathan Southard
  • Publication number: 20230226694
    Abstract: Devices, systems, and methods for social behavior of a telepresence robot are disclosed herein. A telepresence robot may include a drive system, a control system, an object detection system, and a social behaviors component. The drive system is configured to move the telepresence robot. The control system is configured to control the drive system to drive the telepresence robot around a work area. The object detection system is configured to detect a human in proximity to the telepresence robot. The social behaviors component is configured to provide instructions to the control system to cause the telepresence robot to operate according to a first set of rules when a presence of one or more humans is not detected and operate according to a second set of rules when the presence of one or more humans is detected.
    Type: Application
    Filed: March 22, 2023
    Publication date: July 20, 2023
    Inventors: Marco Pinter, Fuji Lai, Daniel Steven Sanchez, James Ballantyne, David Bjorn Roe, Yulun Wang, Charles S. Jordan, Orjeta Taka, Cheuk Wah Wong