Patents by Inventor Marco Pinter

Marco Pinter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180308565
    Abstract: Automatically generating a structured medical note during a remote medical consultation using machine learning. A provider tele-presence device may receive audio from a medical provider. A medical documentation server may be coupled to the network. A machine learning network receives audio data from the provider tele-presence device, the machine learning network generating a structured medical note based on the received audio data, and wherein the structured medical note is stored in the medical documentation server in association with an identity of a patient.
    Type: Application
    Filed: April 24, 2018
    Publication date: October 25, 2018
    Inventors: Marco Pinter, Charles S. Jordan, Yulun Wang, Ole Eichhorn
  • Publication number: 20180286512
    Abstract: A graphical user interface for a remote controlled robot system that includes a robot view field that displays information provided by a robot and an observer view field that display observer information about one or more observers that can receive the robot information. The interface has various features that allow a master user to control the observation and participation of the observers.
    Type: Application
    Filed: December 11, 2017
    Publication date: October 4, 2018
    Inventors: Yulun Wang, Charles S. Jordan, Marco Pinter
  • Publication number: 20180275638
    Abstract: A remote control station that accesses one of at least two different robots that each have at least one unique robot feature. The remote control station receives information that identifies the robot feature of the accessed robot. The remote station displays a display user interface that includes at least one field that corresponds to the robot feature of the accessed robot. The robot may have a laser pointer and/or a projector.
    Type: Application
    Filed: May 29, 2018
    Publication date: September 27, 2018
    Inventors: Yulun Wang, Marco Pinter, Kevin Hanrahan, Daniel Steven Sanchez, Charles S. Jordan, David Bjorn Roe, James Rosenthal, Derek Walters
  • Publication number: 20180263703
    Abstract: A telepresence device may autonomously check patients. The telepresence device may determine the frequency of checking based on whether the patient has a risk factor. The telepresence device may include an image sensor, a thermal camera, a depth sensor, one or more systems for interacting with patients, or the like. The telepresence device may be configured to evaluate the patient's condition using the one or more sensors. The telepresence device may measure physiological characteristics using Eulerian video magnification, may detect pallor, fluid level, or fluid color, may detect thermal asymmetry, may determine a psychological state from body position or movement, or the like. The telepresence device may determine whether the patient is experiencing a potentially harmful condition, such as sepsis or stroke, and may trigger an alarm if so. To overcome alarm fatigue, the telepresence device may annoy a care provider until the care provider responds to an alarm.
    Type: Application
    Filed: May 21, 2018
    Publication date: September 20, 2018
    Inventors: Marco Pinter, Timothy C. Wright, H. Neal Reynolds, Fuji Lai, Yulun Wang
  • Publication number: 20180257233
    Abstract: A robotic system that is used in a tele-presence session. For example, the system can be used by medical personnel to examine, diagnose and prescribe medical treatment in the session. The system includes a robot that has a camera and is controlled by a remote station. The system further includes a storage device that stores session content data regarding the session. The data may include a video/audio taping of the session by the robot. The session content data may also include time stamps that allow a user to determine the times that events occurred during the session. The session content data may be stored on a server that accessible by multiple users. Billing information may be automatically generated using the session content data.
    Type: Application
    Filed: May 7, 2018
    Publication date: September 13, 2018
    Inventors: Timothy C. Wright, Fuji Lai, Marco Pinter, Yulun Wang
  • Patent number: 10071484
    Abstract: A remote control station that controls a robot through a network. The remote control station transmits a robot control command that includes information to move the robot. The remote control station monitors at least one network parameter and scales the robot control command as a function of the network parameter. For example, the remote control station can monitor network latency and scale the robot control command to slow down the robot with an increase in the latency of the network. Such an approach can reduce the amount of overshoot or overcorrection by a user driving the robot.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: September 11, 2018
    Assignee: INTOUCH TECHNOLOGIES, INC.
    Inventors: Amante Mangaser, Jonathan Southard, Marco Pinter, John Cody Herzog, Charles Steve Jordan, Yulun Wang, James Rosenthal
  • Patent number: 10073950
    Abstract: A remote controlled robot with a head that supports a monitor and is coupled to a mobile platform. The mobile robot also includes an auxiliary camera coupled to the mobile platform by a boom. The mobile robot is controlled by a remote control station. By way of example, the robot can be remotely moved about an operating room. The auxiliary camera extends from the boom so that it provides a relatively close view of a patient or other item in the room. An assistant in the operating room may move the boom and the camera. The boom may be connected to a robot head that can be remotely moved by the remote control station.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: September 11, 2018
    Assignee: INTOUCH TECHNOLOGIES, INC.
    Inventors: Yulun Wang, Charles S. Jordan, Kevin Hanrahan, Daniel Sanchez, Marco Pinter
  • Publication number: 20180243914
    Abstract: A robotic system that includes a robot and a remote station. The remote station can generate control commands that are transmitted to the robot through a broadband network. The control commands can be interpreted by the robot to induce action such as robot movement or focusing a robot camera. The robot can generate reporting commands that are transmitted to the remote station through the broadband network. The reporting commands can provide positional feedback or system reports on the robot.
    Type: Application
    Filed: April 30, 2018
    Publication date: August 30, 2018
    Inventors: Yulun Wang, Charles S. Jordan, Marco Pinter, Jonathan Southard
  • Patent number: 10059000
    Abstract: A robot system with a robot that has a camera and a remote control station that can connect to the robot. The connection can include a plurality of privileges. The system further includes a server that controls which privileges are provided to the remote control station. The privileges may include the ability to control the robot, joint in a multi-cast session and the reception of audio/video from the robot. The privileges can be established and edited through a manager control station. The server may contain a database that defines groups of remote control station that can be connected to groups of robots. The database can be edited to vary the stations and robots within a group. The system may also allow for connectivity between a remote control station at a user programmable time window.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: August 28, 2018
    Assignee: INTOUCH TECHNOLOGIES, INC.
    Inventors: John Cody Herzog, Blair Whitney, Yulun Wang, Charles S. Jordan, Marco Pinter
  • Patent number: 9983571
    Abstract: A remote control station that accesses one of at least two different robots that each have at least one unique robot feature. The remote control station receives information that identifies the robot feature of the accessed robot. The remote station displays a display user interface that includes at least one field that corresponds to the robot feature of the accessed robot. The robot may have a laser pointer and/or a projector.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: May 29, 2018
    Assignee: INTOUCH TECHNOLOGIES, INC.
    Inventors: Yulun Wang, Marco Pinter, Kevin Hanrahan, Daniel Steven Sanchez, Charles S. Jordan, David Bjorn Roe, James Rosenthal, Derek Walters
  • Patent number: 9974612
    Abstract: A telepresence device may autonomously check patients. The telepresence device may determine the frequency of checking based on whether the patient has a risk factor. The telepresence device may include an image sensor, a thermal camera, a depth sensor, one or more systems for interacting with patients, or the like. The telepresence device may be configured to evaluate the patient's condition using the one or more sensors. The telepresence device may measure physiological characteristics using Eulerian video magnification, may detect pallor, fluid level, or fluid color, may detect thermal asymmetry, may determine a psychological state from body position or movement, or the like. The telepresence device may determine whether the patient is experiencing a potentially harmful condition, such as sepsis or stroke, and may trigger an alarm if so. To overcome alarm fatigue, the telepresence device may annoy a care provider until the care provider responds to an alarm.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: May 22, 2018
    Assignee: INTOUCH TECHNOLOGIES, INC.
    Inventors: Marco Pinter, Timothy C. Wright, H. Neal Reynolds, Fuji Lai, Yulun Wang
  • Patent number: 9956690
    Abstract: A robotic system that includes a robot and a remote station. The remote station can generate control commands that are transmitted to the robot through a broadband network. The control commands can be interpreted by the robot to induce action such as robot movement or focusing a robot camera. The robot can generate reporting commands that are transmitted to the remote station through the broadband network. The reporting commands can provide positional feedback or system reports on the robot.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: May 1, 2018
    Assignee: INTOUCH TECHNOLOGIES, INC.
    Inventors: Yulun Wang, Charles S. Jordan, Marco Pinter, Jonathan Southard
  • Publication number: 20180099412
    Abstract: Devices, systems, and methods for social behavior of a telepresence robot are disclosed herein. A telepresence robot may include a drive system, a control system, an object detection system, and a social behaviors component. The drive system is configured to move the telepresence robot. The control system is configured to control the drive system to drive the telepresence robot around a work area. The object detection system is configured to detect a human in proximity to the telepresence robot. The social behaviors component is configured to provide instructions to the control system to cause the telepresence robot to operate according to a first set of rules when a presence of one or more humans is not detected and operate according to a second set of rules when the presence of one or more humans is detected.
    Type: Application
    Filed: September 29, 2017
    Publication date: April 12, 2018
    Applicant: iRobot Corporation
    Inventors: Marco Pinter, Fuji Lai, Daniel Steven Sanchez, James Ballantyne, David Bjorn Roe, Yulun Wang, Charles S. Jordan, Orjeta Taka, Cheuk Wah Wong
  • Publication number: 20180088583
    Abstract: A telepresence robot may include a drive system, a control system, an imaging system, and a mapping module. The mapping module may access a map of an area and tags associated with the area. In various embodiments, each tag may include tag coordinates and tag information, which may include a tag annotation. A tag identification system may identify tags within a predetermined range of the current position and the control system may execute an action based on an identified tag whose tag information comprises a telepresence robot action modifier. The telepresence robot may rotate an upper portion independent from a lower portion. A remote terminal may allow an operator to control the telepresence robot using any combination of control methods, including by selecting a destination in a live video feed, by selecting a destination on a map, or by using a joystick or other peripheral device.
    Type: Application
    Filed: September 29, 2017
    Publication date: March 29, 2018
    Applicant: IROBOT CORPORATION
    Inventors: Yulun Wang, Charles S. Jordan, Tim Wright, Michael Chan, Marco Pinter, Kevin Hanrahan, Daniel Sanchez, James Ballantyne, Cody Herzog, Blair Whitney, Fuji Lai, Kelton Temby, Eben Christopher Rauhut, Justin H. Kearns, Cheuk Wah Wong, Timothy Sturtevant Farlow
  • Publication number: 20180074552
    Abstract: A robot system with a robot that has a camera and a remote control station that can connect to the robot. The connection can include a plurality of privileges. The system further includes a server that controls which privileges are provided to the remote control station. The privileges may include the ability to control the robot, joint in a multi-cast session and the reception of audio/video from the robot. The privileges can be established and edited through a manager control station. The server may contain a database that defines groups of remote control station that can be connected to groups of robots. The database can be edited to vary the stations and robots within a group. The system may also allow for connectivity between a remote control station at a user programmable time window.
    Type: Application
    Filed: November 20, 2017
    Publication date: March 15, 2018
    Inventors: John Cody Herzog, Blair Whitney, Yulun Wang, Charles S. Jordan, Marco Pinter
  • Publication number: 20180017966
    Abstract: A robotic system that includes a mobile robot and a remote input device. The input device may be a joystick that is used to move a camera and a mobile platform of the robot. The system may operate in a mode where the mobile platform moves in a camera reference coordinate system. The camera reference coordinate system is fixed to a viewing image provided by the camera so that movement of the robot corresponds to a direction viewed on a screen. This prevents disorientation during movement of the robot if the camera is panned across a viewing area.
    Type: Application
    Filed: September 18, 2017
    Publication date: January 18, 2018
    Inventors: Yulun Wang, Charles S. Jordan, Keith P. Laby, Jonathan Southard, Marco Pinter, Brian Miller
  • Patent number: 9842192
    Abstract: A graphical user interface for a remote controlled robot system that includes a robot view field that displays information provided by a robot and an observer view field that display observer information about one or more observers that can receive the robot information. The interface has various features that allow a master user to control the observation and participation of the observers.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: December 12, 2017
    Assignee: INTOUCH TECHNOLOGIES, INC.
    Inventors: Yulun Wang, Charles S. Jordan, Marco Pinter
  • Patent number: 9827666
    Abstract: A robot system with a robot that has a camera and a remote control station that can connect to the robot. The connection can include a plurality of privileges. The system further includes a server that controls which privileges are provided to the remote control station. The privileges may include the ability to control the robot, joint in a multi-cast session and the reception of audio/video from the robot. The privileges can be established and edited through a manager control station. The server may contain a database that defines groups of remote control station that can be connected to groups of robots. The database can be edited to vary the stations and robots within a group. The system may also allow for connectivity between a remote control station at a user programmable time window.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: November 28, 2017
    Assignee: INTOUCH TECHNOLOGIES, INC.
    Inventors: John Cody Herzog, Blair Whitney, Yulun Wang, Charles S. Jordan, Marco Pinter
  • Publication number: 20170334069
    Abstract: A telepresence robot may include a drive system, a control system, an imaging system, and a mapping module. The mapping module may access a plan view map of an area and tags associated with the area. In various embodiments, each tag may include tag coordinates and tag information, which may include a tag annotation. A tag identification system may identify tags within a predetermined range of the current position and the control system may execute an action based on an identified tag whose tag information comprises a telepresence robot action modifier. The telepresence robot may rotate an upper portion independent from a lower portion. A remote terminal may allow an operator to control the telepresence robot using any combination of control methods, including by selecting a destination in a live video feed, by selecting a destination on a plan view map, or by using a joystick or other peripheral device.
    Type: Application
    Filed: March 1, 2017
    Publication date: November 23, 2017
    Inventors: Yulun Wang, Charles S. Jordan, Tim Wright, Michael Chan, Marco Pinter, Kevin Hanrahan, Daniel Sanchez, James Ballantyne, Cody Herzog, Blair Whitney, Fuji Lai, Kelton Temby, Eben Christopher Rauhut, Justin H. Kearns, Cheuk Wah Wong, Timothy Sturtevant Farlow
  • Patent number: 9785149
    Abstract: A telepresence robot may include a drive system, a control system, an imaging system, and a mapping module. The mapping module may access a map of an area and tags associated with the area. In various embodiments, each tag may include tag coordinates and tag information, which may include a tag annotation. A tag identification system may identify tags within a predetermined range of the current position and the control system may execute an action based on an identified tag whose tag information comprises a telepresence robot action modifier. The telepresence robot may rotate an upper portion independent from a lower portion. A remote terminal may allow an operator to control the telepresence robot using any combination of control methods, including by selecting a destination in a live video feed, by selecting a destination on a map, or by using a joystick or other peripheral device.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: October 10, 2017
    Assignees: INTOUCH TECHNOLOGIES, INC., IROBOT CORPORATION
    Inventors: Yulun Wang, Charles S. Jordan, Tim Wright, Michael Chan, Marco Pinter, Kevin Hanrahan, Daniel Sanchez, James Ballantyne, Cody Herzog, Blair Whitney, Fuji Lai, Kelton Temby, Eben Christopher Rauhut, Justin H. Kearns, Cheuk Wah Wong, Timothy Sturtevant Farlow