Patents by Inventor Marcus Antonius Verschuuren

Marcus Antonius Verschuuren has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150364647
    Abstract: The present invention relates to a light emitting device (100) comprising: a substrate (102); a light emitting diode structure (106) arranged on the substrate (102), the diode structure (106) comprising a first semiconducting layer (108), an active region (110) and a second semiconducting layer (112), wherein a light output surface of the diode structure comprises a plurality of protruding surface structures (104) each having a peak height, a sidewall slope (122) and orientation in relation to the substrate, the plurality of protruding structures (104) comprising a first set and a second set of protruding surface structures, the first set and second set of protruding surface structures differing by at least one of the peak height, sidewall slope and orientation in relation to the substrate. The invention also relates to a method for manufacturing a light emitting device where the protruding surface structures are formed by imprint lithography to form a three-dimensional pattern and subsequent etching.
    Type: Application
    Filed: January 31, 2014
    Publication date: December 17, 2015
    Inventors: CORNELIS EUSTATIUS TIMMERING, MARCUS ANTONIUS VERSCHUUREN, TONI LOPEZ, ABRAHAM RUDOLF BALKENENDE
  • Publication number: 20150291815
    Abstract: Disclosed is a silane-based composition for forming an imprinting ink for imprint lithography applications in which the crosslinking of the silanes in the composition is suppressed by the inclusion of a compound of Formula 3: wherein R9 is selected from the group consisting of C1-C6 linear or branched alkyl groups and a phenyl group, and wherein n is a positive integer having a value of at least 2. An ink may be formed by adding a PAG, photoinitiator or TAG to the composition such upon their activation, the crosslinking reaction is completed. An imprinting method using 10 such an ink is also disclosed.
    Type: Application
    Filed: December 13, 2013
    Publication date: October 15, 2015
    Applicant: Koninklijke Philips N.V.
    Inventors: Marcus Antonius Verschuuren, Remco Van Brakel
  • Patent number: 9157605
    Abstract: Proposed is an illumination device (100), comprising a light source (110) such as an LED or a laser diode, a wavelength conversion medium (120) such as a phosphor, and a periodic antenna array (300) made of a highly polarisable material such as a metal. The light source emits primary wavelength light that at least partially is converted in secondary wavelength light by the wavelength conversion medium. The periodic antenna array is positioned in close proximity to the wavelength conversion medium and functions to enhance the efficiency of the absorption and/or emission processes in the wavelength conversion medium through the coupling of the incident primary wavelength light or the emitted secondary light to surface lattice resonances that arise from the diffractive coupling of localized surface plasmon polaritons in the individual antennas of the array.
    Type: Grant
    Filed: January 16, 2012
    Date of Patent: October 13, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Said Rahimzadeh Kalaeh Rodriguez, Jaime Gomez Rivas, Abraham Rudolf Balkenende, Marcus Antonius Verschuuren, Gabriel Sebastian Lozano Barbero, Shunsuke Murai
  • Publication number: 20150239171
    Abstract: The present invention relates to a silicone rubber like material and a printing device including a stamp layer comprising such a material. The material is suitable for use in soft lithography as it enables stable features having dimensions in the nanometer range to be obtained on a substrate, and also allows for the accommodation onto rough and non-flat substrate surfaces. The invention also relates to methods for manufacturing the silicone rubber like material and stamp layer and use thereof in lithographic processes.
    Type: Application
    Filed: April 28, 2015
    Publication date: August 27, 2015
    Inventor: MARCUS ANTONIUS VERSCHUUREN
  • Patent number: 9105867
    Abstract: This invention relates to a method for forming a patterned layer on a substrate by means of an imprint process. According to the method a first layer is provided on the substrate, and a pattern of recesses is provided in the first layer by imprinting the layer with a patterning means. Then the first layer is cured. The curing is followed by performing a first surface treatment onto the first layer to make the surface of thereof hydrophilic, and then performing a second surface treatment onto a selected subarea of the surface of the first layer to make the. subarea hydrophobic. The subarea includes surface portions between the recesses and excludes the recesses. Finally, a conducting pattern material (41) is deposited into the recesses.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: August 11, 2015
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Marcus Antonius Verschuuren, Herbert Lifka, Cristina Tanase
  • Publication number: 20150171273
    Abstract: The present invention discloses a method for manufacturing a solid state light emitting device having a plurality of light-sources, the method comprising the steps of: providing a substrate having a growth surface; providing a mask layer on the growth surface, the mask layer having a plurality of openings through which the growth surface is exposed, wherein a largest lateral dimension of each of said openings is less than 0.
    Type: Application
    Filed: February 24, 2015
    Publication date: June 18, 2015
    Applicant: Koninklijke Philips Electronics N.V.
    Inventors: ABRAHAM RUDOLF BALKENENDE, MARCUS ANTONIUS VERSCHUUREN, GEORGE IMMINK
  • Patent number: 9038536
    Abstract: The present invention relates to a silicone rubber like material and a printing device including a stamp layer (100;201) comprising such a material. The material is suitable for use in soft lithography as it enables stable features having dimensions in the nanometer range to be obtained on a substrate, and also allows for the accommodation onto rough and non-flat substrate surfaces. The invention also relates to methods for manufacturing the silicone rubber like material and stamp layer (100;201) and use thereof in lithographic processes.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: May 26, 2015
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Marcus Antonius Verschuuren
  • Patent number: 8969890
    Abstract: The present invention discloses a method for manufacturing a solid state light emitting device having a plurality of light-sources, the method comprising the steps of: providing a substrate having a growth surface; providing a mask layer on the growth surface, the mask layer having a plurality of openings through which the growth surface is exposed, wherein a largest lateral dimension of each of said openings is less than 0.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: March 3, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Abraham Rudolf Balkenende, Marcus Antonius Verschuuren, George Immink
  • Publication number: 20140197390
    Abstract: The invention provides an organic light-emitting device (OLED) comprising: a transparent substrate; a first, transparent electrode layer arranged on said substrate; one or more organic light-active layers arranged on said first electrode layer; a second electrode layer arranged on said one or more organic light-active layers; and a discontinuous layer comprising discrete, randomly distributed nanometer-sized domains of a low refractive index material, arranged between said first electrode layer and said one or more organic light-active layers. The discontinuous layer of discrete, randomly distributed nano-sized domains increases the light extraction efficiency of the OLED.
    Type: Application
    Filed: May 23, 2012
    Publication date: July 17, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Jan Frank Strömer, Marcus Antonius Verschuuren
  • Publication number: 20130286633
    Abstract: Proposed is an illumination device (100), comprising a light source (110) such as an LED or a laser diode, a wavelength conversion medium (120) such as a phosphor, and a periodic antenna array (300) made of a highly polarisable material such as a metal. The light source emits primary wavelength light that at least partially is converted in secondary wavelength light by the wavelength conversion medium. The periodic antenna array is positioned in close proximity to the wavelength conversion medium and functions to enhance the efficiency of the absorption and/or emission processes in the wavelength conversion medium through the coupling of the incident primary wavelength light or the emitted secondary light to surface lattice resonances that arise from the diffractive coupling of localized surface plasmon polaritons in the individual antennas of the array.
    Type: Application
    Filed: January 16, 2012
    Publication date: October 31, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Said Rahimzadeh Kalaleh Rodriguez, Jaime Gomez Rivas, Abraham Rudolf Balkenende, Marcus Antonius Verschuuren, Gabriel Sebastian Lozano Barbero, Shunsuke Murai
  • Patent number: 8536600
    Abstract: A semiconductor light emitting diode (1, LED), comprising a first and a second electrode (40, 11) for applying a voltage across an active region (4) for generation of light, a light emitting surface (6), and a plurality of photonic crystals (101, 102). Further, at least two photonic crystals (101, 102) of a first and a second type are adapted to extract light from the active region (4) and differ from each other with respect to at least one lattice parameter. Each of said at least two photonic crystals (101, 102) are associated with a respective far field pattern, wherein an arrangement of said plurality of photonic crystals (101, 102) is provided to arrange said at least two photonic crystals (101, 102). In this manner, a far field pattern is created by combining the respective far field patterns associated with each of said at least two photonic crystals (101, 102).
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: September 17, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Marcus Antonius Verschuuren, Hendrik Adrianus Van Sprang
  • Publication number: 20130214251
    Abstract: The present invention discloses a method for manufacturing a solid state light emitting device having a plurality of light-sources, the method comprising the steps of: providing a substrate having a growth surface; providing a mask layer on the growth surface, the mask layer having a plurality of openings through which the growth surface is exposed, wherein a largest lateral dimension of each of said openings is less than 0.
    Type: Application
    Filed: October 20, 2011
    Publication date: August 22, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Abraham Rudolf Balkenende, Marcus Antonius Verschuuren, George Immink
  • Patent number: 8318253
    Abstract: A method of making an imprint lithography template includes applying a curable material to a patterned surface of a master imprint template, allowing the curable material to cure and thereby forming a second imprint template having a patterned surface which is the inverse of the patterned surface of the master imprint template; removing the second imprint template from the master imprint template; applying inorganic sol-gel to a substrate; imprinting the inorganic sol-gel with the second imprint template; allowing the inorganic sol-gel to cure; and removing the second imprint template from the cured inorganic sol-gel, such that the inorganic sol-gel forms a third imprint template having a patterned surface which corresponds with the patterned surface of the master imprint template.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: November 27, 2012
    Assignees: ASML Netherlands B.V., Koninklijke Philips Electronics N.V.
    Inventors: Marcus Antonius Verschuuren, Sander Frederik Wuister
  • Patent number: 8190007
    Abstract: An imaging device (300), a lighting control system (400) including the imaging device (300), and a method for aligning with a reference image lighting of a site (220) illuminated by least one light source (240) are provided. The imaging device (300) and/or the lighting control system (400) include at least one processor (410) configured to control the imaging device (300) and the light source (240). The imaging device (300) has an array of reflectors (320) including selectable reflectors; a lens configured to receive image rays (330) for forming an image including pixels and provide the image rays (330) to the array of reflectors (320) for reflection as reflected rays (355); and a detector (310) configured to receive the reflected rays (355) and detect characteristics of each pixel of the image for form a resolved image. The processor (410) is further configured to sequentially select each reflector (350) of the array of reflectors (320) for reflecting the reflected rays (355) towards the detector (310).
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: May 29, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Eduard Johannes Meijer, Jan De Graaf, Marcus Antonius Verschuuren
  • Patent number: 8172968
    Abstract: The invention relates to a method for contacting a flexible sheet to a first element with improved lateral alignment. The method includes a step of measuring a first lateral misalignment after establishing a first contact between the flexible sheet and either of the first element and a sheet parking surface called anchor in the first stage. If the 5 misalignment exceeds a predetermined threshold the flexible sheet is parked at the anchor such that it is not in contact with the first element, and the relative position of the first element and the anchor is altered during the second stage for correcting the mismatch during a contact between the flexible sheet and the first element to be established within the next step of the method. During the steps of shifting the contact point to obtain the second stage 10 the contacting process is more accurate and reproducible than the process for establishing the initial contact.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: May 8, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Marcus Antonius Verschuuren, Mischa Megens
  • Publication number: 20110293231
    Abstract: Optical faceplates and methods for manufacturing same are disclosed. An optical faceplate (10) includes a substrate (12) having a major surface, and an array (15) of optical fibers embossed on the substrate. The optical fibers have a length determined in accordance with a layer of material deposited on the substrate from which the optical fibers are formed, a depth of the features in a mold or stamp and a number of processing/stamping steps. A method includes forming (202) a layer on a substrate having a major surface, and processing (204) the layer to form an array of optical fibers transversely disposed to the major surface.
    Type: Application
    Filed: May 26, 2010
    Publication date: December 1, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Ties van Bommel, Rifat Ata Mustafa Hikmet, Hans van Sprang, Marcus Antonius Verschuuren
  • Publication number: 20110094403
    Abstract: The present invention relates to a silicone rubber like material and a printing device including a stamp layer (100;201) comprising such a material. The material is suitable for use in soft lithography as it enables stable features having mensions in the nanometer range to be obtained on a substrate, and also allows for the accommodation onto rough and non-flat substrate surfaces. The invention also relates to methods for manufacturing the silicone rubber like material and stamp layer (100;201) and use thereof in lithographic processes.
    Type: Application
    Filed: May 29, 2009
    Publication date: April 28, 2011
    Applicant: Koninklijke Philips Electronics N.V.
    Inventor: Marcus Antonius Verschuuren
  • Publication number: 20110012515
    Abstract: An imaging device (300), a lighting control system (400) including the imaging device (300), and a method for aligning with a reference image lighting of a site (220) illuminated by least one light source (240) are provided. The imaging device (300) and/or the lighting control system (400) include at least one processor (410) configured to control the imaging device (300) and the light source (240). The imaging device (300) has an array of reflectors (320) including selectable reflectors; a lens configured to receive image rays (330) for forming an image including pixels and provide the image rays (330) to the array of reflectors (320) for reflection as reflected rays (355); and a detector (310) configured to receive the reflected rays (355) and detect characteristics of each pixel of the image for form a resolved image. The processor (410) is further configured to sequentially select each reflector (350) of the array of reflectors (320) for reflecting the reflected rays (355) towards the detector (310).
    Type: Application
    Filed: March 13, 2009
    Publication date: January 20, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Eduard Johannes Meijer, Jan De Graaf, Marcus Antonius Verschuuren
  • Patent number: 7855449
    Abstract: A cooling device for cooling a light-emitting semiconductor device, such as a LED device (20), comprises a ceramic plate (15) having coolant-conveying channels (12) incorporated therein. The ceramic plate (15) is adapted for forming an integral part of the optical system of the light-emitting semiconductor device (20) and to cool a light-emitting portion (26) of the light-emitting semiconductor device (20). A method of forming a cooling device comprises the steps of forming a charge of ceramic particles, embossing the charge with a stamp to form coolant-conveying channels in the charge, hardening the charge, and providing a cover on top of the channels to seal them.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: December 21, 2010
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Jan De Graff, Celine Catherine Sarah Nicole, Marcus Antonius Verschuuren, Hans Van Sprang, Theo Arnold Kop, Johan Marra, Ronald Martin Wolf
  • Publication number: 20100270572
    Abstract: A semiconductor light emitting diode (1, LED), comprising a first and a second electrode (40, 11) for applying a voltage across an active region (4) for generation of light, a light emitting surface (6), and a plurality of photonic crystals (101, 102). Further, at least two photonic crystals (101, 102) of a first and a second type are adapted to extract light from the active region (4) and differ from each other with respect to at least one lattice parameter. Each of said at least two photonic crystals (101, 102) are associated with a respective far field pattern, wherein an arrangement of said plurality of photonic crystals (101, 102) is provided to arrange said at least two photonic crystals (101, 102). In this manner, a far field pattern is created by combining the respective far field patterns associated with each of said at least two photonic crystals (101, 102).
    Type: Application
    Filed: December 12, 2008
    Publication date: October 28, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Marcus Antonius Verschuuren, Hendrik Adrianus Van Sprang