Patents by Inventor Mareva B. Fevre

Mareva B. Fevre has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200221692
    Abstract: Techniques regarding chemical compounds with antimicrobial functionality are provided. For example, one or more embodiments describe herein can comprise a monomer that can comprise a molecular backbone. The molecular backbone can comprise a bis(urea)guanidinium structure covalently bonded to a functional group, which can comprise a radical. Also, the monomer can have supramolecular assembly functionality.
    Type: Application
    Filed: January 16, 2020
    Publication date: July 16, 2020
    Inventors: Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Victoria A. Piunova, Pang Kern Jeremy Tan, Yi Yan Yang
  • Publication number: 20200221695
    Abstract: Techniques regarding polymers with antimicrobial functionality are provided. For example, one or more embodiments described herein can regard a polymer, which can comprise a repeating ionene unit. The repeating ionene unit can comprise a cation distributed along a degradable backbone. The degradable backbone can comprise a terephthalamide structure. Further, the repeating ionene unit can have antimicrobial functionality.
    Type: Application
    Filed: March 25, 2020
    Publication date: July 16, 2020
    Inventors: Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Victoria A. Piunova, Pang Kern Jeremy Tan, Chuan Yang, Yi Yan Yang
  • Patent number: 10696849
    Abstract: Embodiments are directed to a method of making an antifouling and bactericidal coating with tailorable surface topology. The method includes depositing a layer of branched polyethyleneimine (BPEI) and diamino-functionalized poly(propylene oxide) (PPO) in a mixture of water and organic solvent on a substrate to form a layer of BPEI/PPO. The method includes depositing a layer of glyoxal in a water-containing solution on the layer of BPEI/PPO. The method further includes curing the layer of BPEI/PPO and layer of glyoxal to form a homogenous, glyoxal crosslinked BPEI/PPO coating, where the curing induces local precipitation and alteration of the glyoxal crosslinked BPEI/PPO coating to provide a textured surface.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: June 30, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, AGENCY FOR SCIENCE, TECHNOLOGY
    Inventors: Amos Cahan, Xin Ding, Mareva B. Fevre, James L. Hedrick, Zhen Chang Liang, Nathaniel H. Park, Theodore G. van Kessel, Rudy J. Wojtecki, Yi Yan Yang
  • Patent number: 10696791
    Abstract: A polymer is described herein that includes a plurality of N-J-N or N—C—S repeating units, wherein each J is independently a carbon atom, an alkyl group, or an aryl group; a plurality of hydrophilic groups bonded with the repeating units; and a plurality of hydrophobic groups bonded with the hydrophilic groups and the repeating units. Such polymers may be made into hydrogels by exposure to water, and the hydrogels may be used as delivery vehicles for various payloads.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: June 30, 2020
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Mareva B. Fevre, Jeannette M. Garcia, James L. Hedrick, Rudy J. Wojtecki
  • Publication number: 20200199298
    Abstract: In an embodiment is provided a polymer that includes a plurality of N-J-N or N—C—S repeating units, wherein each J is independently a carbon atom, an alkyl group, or an aryl group; a plurality of hydrophilic groups bonded with the repeating units; and a plurality of hydrophobic groups bonded with the hydrophilic groups and the repeating units. In another embodiment is provided hydrogels of such polymers. The hydrogels may be used as delivery vehicles for various payloads. In another embodiment is provided methods of forming such polymers.
    Type: Application
    Filed: February 27, 2020
    Publication date: June 25, 2020
    Inventors: Dylan J. BODAY, Mareva B. FEVRE, Jeannette M. GARCIA, James L. HEDRICK, Rudy J. WOJTECKI
  • Patent number: 10687528
    Abstract: Techniques regarding ionene and/or polyionene compositions with antimicrobial functionalities are provided. For example, one or more embodiments can comprise a chemical compound, which can comprise an ionene unit. The ionene unit can comprise a cation distributed along a degradable backbone. The degradable backbone can comprise a norspermidine structure having a carbonyl group. Also, the ionene unit can have antimicrobial functionality.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: June 23, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Victoria A. Piunova, Pang Kern Jeremy Tan, Chuan Yang, Yi Yan Yang
  • Patent number: 10687530
    Abstract: Techniques regarding ionene and/or polyionene compositions with antimicrobial functionality and enhanced hydrophilicity are provided. For example, one or more embodiments can regard a chemical compound that can comprise an ionene unit, which can comprise a cation distributed along a degradable backbone. The degradable backbone can comprise a terephthalamide structure. The ionene unit can have antimicrobial functionality. Further, the chemical compound can comprise a hydrophilic functional group covalently bonded to the ionene unit. Also, the chemical compound can have carbohydrate mimetic functionality.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: June 23, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Victoria A. Piunova, Pang Kern Jeremy Tan, Yi Yan Yang, Mu San Zhang
  • Patent number: 10682313
    Abstract: The subject matter of this invention relates to block copolymers (BCPs) and, more particularly, to block copolymers capable of self-assembly into nanoparticles for the delivery of hydrophobic cargos. The BCPs include a hydrophobic block that contains a thioether functional group that is susceptible to oxidation, transforming the solubility of the block from hydrophobic to hydrophilic, thereby releasing the hydrophobic cargo of the nanoparticle.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: June 16, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, INSTITUTE OF BIOENGINEERING AND NANOTECHNOLOGY, BIOMEDICAL SCIENCES INSTITUTE
    Inventors: Dylan Boday, Willy Chin, Mareva B. Fevre, Jeannette Garcia, James L. Hedrick, Eunice Leong, Nathaniel H. Park, Rudy J. Wojtecki, Yi Yan Yang
  • Patent number: 10667514
    Abstract: Techniques regarding amine monomers that can form ionene compositions with antimicrobial functionality are provided. For example, one or more embodiments described herein can comprise a monomer, which can comprise a molecular backbone. The molecular backbone can comprise a norspermidine structure. The norspermidine structure can comprise a tertiary amino group. Also, the tertiary amino group can comprise a functional group, and an amino group of the norspermidine structure can be capable of being ionized.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: June 2, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Victoria A. Piunova, Pang Kern Jeremy Tan, Chuan Yang, Yi Yan Yang
  • Patent number: 10668502
    Abstract: Polymeric coatings and methods of forming polymeric coatings are described. In a method of forming a polymeric coating a first layer is deposited on a substrate. The first layer includes at least one highly soluble diamine component. A second layer is formed on the substrate to contact the first layer. The second layer includes paraformaldehyde and an aromatic diamine including two primary amine groups. Once formed, the first and second layers are heated. Heating causes the components of the first and second layers to cure. For example, the paraformaldehyde from the second layer diffuses into the first layer and reacts via hemiaminal-type chemistry with the high soluble diamine component. The coatings may be substantially homogenous or comprise a compositional gradient in thickness or along the substrate plane depending on deposition methods and other processing parameters.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: June 2, 2020
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Mareva B. Fevre, Jeannette M. Garcia, James L. Hedrick, Rudy J. Wojtecki
  • Publication number: 20200155686
    Abstract: The subject matter of this invention relates to hydrogel compositions and, more particularly, to hydrogel compositions comprising block copolymers (BCPs) capable of self-assembly into nanoparticles for the delivery and controlled release of therapeutic cargos.
    Type: Application
    Filed: November 21, 2018
    Publication date: May 21, 2020
    Inventors: Mareva B. Fevre, James L. Hedrick, Ashlynn Lee, Nathaniel H. Park, Rudy J. Wojtecki, Yi Yan Yang, Zhi Xiang Voo
  • Patent number: 10653142
    Abstract: Techniques regarding polymers with antimicrobial functionality are provided. For example, one or more embodiments described herein can regard a polymer, which can comprise a repeating ionene unit. The repeating ionene unit can comprise a cation distributed along a degradable backbone. The degradable backbone can comprise a terephthalamide structure. Further, the repeating ionene unit can have antimicrobial functionality.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: May 19, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Victoria A. Piunova, Pang Kern Jeremy Tan, Chuan Yang, Yi Yan Yang
  • Patent number: 10595527
    Abstract: Techniques regarding chemical compounds with antimicrobial functionality are provided. For example, one or more embodiments describe herein can comprise a monomer that can comprise a molecular backbone. The molecular backbone can comprise a bis(urea)guanidinium structure covalently bonded to a functional group, which can comprise a radical. Also, the monomer can have supramolecular assembly functionality.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: March 24, 2020
    Assignee: International Business Machines Corporation
    Inventors: Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Victoria A. Piunova, Pang Kern Jeremy Tan, Yi Yan Yang
  • Publication number: 20200071542
    Abstract: Antibacterial coatings and methods of making the antibacterial coatings are described herein. A first branched polyethylenimine (BPEI) layer is formed and a first glyoxal layer is formed on a surface of the BPEI layer. The first BPEI layer and the first glyoxal layer are cured to form a crosslinked BPEI coating. The first BPEI layer can be modified with superhydrophobic moieties, superhydrophilic moieties, or negatively charged moieties to increase the antifouling characteristics of the coating. The first BPEI layer can be modified with contact-killing bactericidal moieties to increase the bactericidal characteristics of the coating.
    Type: Application
    Filed: November 8, 2019
    Publication date: March 5, 2020
    Inventors: Amos Cahan, Hariklia Deligianni, Xin Ding, Mareva B. Fevre, James L. Hedrick, Pei-Yun S. Hsueh, Zhen Chang Liang, Nathaniel H. Park, Theodore G. van Kessel, Rudy J. Wojtecki, Yi Yan Yang
  • Publication number: 20200071541
    Abstract: Embodiments are directed to a method of making an antifouling and bactericidal coating with tailorable surface topology. The method includes depositing a layer of branched polyethyleneimine (BPEI) and diamino-functionalized poly(propylene oxide) (PPO) in a mixture of water and organic solvent on a substrate to form a layer of BPEI/PPO. The method includes depositing a layer of glyoxal in a water-containing solution on the layer of BPEI/PPO. The method further includes curing the layer of BPEI/PPO and layer of glyoxal to form a homogenous, glyoxal crosslinked BPEI/PPO coating, where the curing induces local precipitation and alteration of the glyoxal crosslinked BPEI/PPO coating to provide a textured surface.
    Type: Application
    Filed: November 6, 2019
    Publication date: March 5, 2020
    Inventors: Amos Cahan, Xin Ding, Mareva B. Fevre, James L. Hedrick, Zhen Chang Liang, Nathaniel H. Park, Theodore G. van Kessel, Rudy J. Wojtecki, Yi Yan Yang
  • Publication number: 20200071543
    Abstract: Antibacterial coatings and methods of making the antibacterial coatings are described herein. A first branched polyethylenimine (BPEI) layer is formed and a first glyoxal layer is formed on a surface of the BPEI layer. The first BPEI layer and the first glyoxal layer are cured to form a crosslinked BPEI coating. The first BPEI layer can be modified with superhydrophobic moieties, superhydrophilic moieties, or negatively charged moieties to increase the antifouling characteristics of the coating. The first BPEI layer can be modified with contact-killing bactericidal moieties to increase the bactericidal characteristics of the coating.
    Type: Application
    Filed: November 8, 2019
    Publication date: March 5, 2020
    Inventors: Amos Cahan, Hariklia Deligianni, Xin Ding, Mareva B. Fevre, James L. Hedrick, Pei-Yun S. Hsueh, Zhen Chang Liang, Nathaniel H. Park, Theodore G. van Kessel, Rudy J. Wojtecki, Yi Yan Yang
  • Patent number: 10563069
    Abstract: Antibacterial coatings and methods of making the antibacterial coatings are described herein. A first branched polyethylenimine (BPEI) layer is formed and a first glyoxal layer is formed on a surface of the BPEI layer. The first BPEI layer and the first glyoxal layer are cured to form a crosslinked BPEI coating. The first BPEI layer can be modified with superhydrophobic moieties, superhydrophilic moieties, or negatively charged moieties to increase the antifouling characteristics of the coating. The first BPEI layer can be modified with contact-killing bactericidal moieties to increase the bactericidal characteristics of the coating.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: February 18, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, Institute of Bioengineering and Nanotechnology
    Inventors: Amos Cahan, Hariklia Deligianni, Xin Ding, Mareva B. Fevre, James L. Hedrick, Pei-Yun S. Hsueh, Zhen Chang Liang, Nathaniel H. Park, Theodore G. van Kessel, Rudy J. Wojtecki, Yi Yan Yang
  • Publication number: 20200046886
    Abstract: Antibacterial coatings and methods of making the antibacterial coatings are described herein. In particular, a method for forming an organocatalyzed polythioether coating is provided in which a first solution including a bis-silylated dithiol and a fluoroarene is prepared. A second solution including an organocatalyst is prepared. The first solution and the second solution are mixed to form a mixed solution. The mixed solution is applied to a substrate, and the substrate is cured.
    Type: Application
    Filed: October 14, 2019
    Publication date: February 13, 2020
    Inventors: Amos Cahan, Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Theodore G. van Kessel, Rudy J. Wojtecki, Yi Yan Yang
  • Patent number: 10557008
    Abstract: A porous material includes a resin material based on a trifunctional ethynyl monomer. Pores in the porous material can be of various sizes including nanoscale sizes. The porous material may be used in a variety of applications, such as those requiring materials with a high strength-to-weight ratio. The porous material can include a filler material dispersed therein. The filler material can be, for example, a particle, a fiber, a fabric, or the like. In some examples, the filler material can be a carbon fiber or a carbon nanotube. A method of making a porous material includes forming a resin including a trifunctional ethynyl monomer component and a polythioaminal component. The resin can be heated to promote segregation of the components into different phases with predominately one or the other component in each phase. Processing of the resin after phase segregation to decompose the polythioaminal component can form pores in the resin.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: February 11, 2020
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Mareva B. Fevre, Jeannette M. Garcia, James L. Hedrick, Rudy J. Wojtecki
  • Patent number: 10507267
    Abstract: Antibacterial coatings and methods of making the antibacterial coatings are described herein. In particular, a method for forming an organocatalyzed polythioether coating is provided in which a first solution including a bis-silylated dithiol and a fluoroarene is prepared. A second solution including an organocatalyst is prepared. The first solution and the second solution are mixed to form a mixed solution. The mixed solution is applied to a substrate, and the substrate is cured.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: December 17, 2019
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Amos Cahan, Mareva B. Fevre, James L. Hedrick, Nathaniel H. Park, Theodore G. van Kessel, Rudy J. Wojtecki, Yi Yan Yang