Patents by Inventor Maria J. Anc

Maria J. Anc has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11670740
    Abstract: A conversion layer, a light emitting device and a method for producing a conversion layer are disclosed. In an embodiment a conversion layer includes light-converting nanocrystals, an encapsulation surrounding the light-converting nanocrystals and ligands bonded to a surface of the encapsulation, wherein encapsulated light-converting nanocrystals are crosslinked by the ligands.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: June 6, 2023
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Maria J. Anc, Juanita N. Kurtin, Joseph Treadway
  • Patent number: 11271141
    Abstract: A light-emitting device including a light-emitting semiconductor chip having a semiconductor layer sequence having at least one light-emitting semiconductor layer and a light-outcoupling surface, the light-emitting device further including a wavelength conversion layer arranged on the light-outcoupling surface, the wavelength conversion layer including quantum dots.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: March 8, 2022
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Maria J. Anc, Darshan Kundaliya, Madis Raukas, David O'Brien
  • Publication number: 20210098655
    Abstract: A conversion layer, a light emitting device and a method for producing a conversion layer are disclosed. In an embodiment a conversion layer includes light-converting nanocrystals, an encapsulation surrounding the light-converting nanocrystals and ligands bonded to a surface of the encapsulation, wherein encapsulated light-converting nanocrystals are crosslinked by the ligands.
    Type: Application
    Filed: September 26, 2019
    Publication date: April 1, 2021
    Inventors: Maria J. Anc, Juanita N. Kurtin, Joseph Treadway
  • Publication number: 20200403126
    Abstract: A quantum dot structure and a method for producing a quantum dot structure are disclosed. In an embodiment the quantum dot structure includes a core comprising a III-V-compound semiconductor material, an intermediate region comprising a III-V-compound semiconductor material at least partially surrounding the core, a shell comprising a III-V-compound semiconductor material at least partially surrounding the core and the intermediate region and a passivation region comprising a II-VI-compound semiconductor material at least partially surrounding the shell.
    Type: Application
    Filed: June 12, 2020
    Publication date: December 24, 2020
    Inventors: Jonathan Owen, Maria J. Anc, Madis Raukas, Joseph Treadway, Anindya Swarnakar, Brandon McMurtry
  • Publication number: 20200168771
    Abstract: A light-emitting device including a light-emitting semiconductor chip having a semiconductor layer sequence having at least one light-emitting semiconductor layer and a light-outcoupling surface, the light-emitting device further including a wavelength conversion layer arranged on the light-outcoupling surface, the wavelength conversion layer including quantum dots.
    Type: Application
    Filed: November 26, 2018
    Publication date: May 28, 2020
    Inventors: Maria J. Anc, Darshan Kundaliya, Madis Raukas, David O'Brien
  • Patent number: 9466771
    Abstract: Disclosed herein are wavelength converters and methods for making the same. The wavelength converters include a single layer of a polymeric matrix material, and one or more types of wavelength converting particles. In some embodiments the wavelength converters include first and second types of wavelength converting particles that are distributed in a desired manner within the single layer of polymeric matrix material. Methods of forming such wavelength converters and lighting devices including such wavelength converters are also disclosed.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: October 11, 2016
    Assignee: OSRAM SYLVANIA Inc.
    Inventor: Maria J. Anc
  • Patent number: 9390920
    Abstract: Methods for depositing nanomaterial onto a substrate are disclosed. Also disclosed are compositions useful for depositing nanomaterial, methods of making devices including nanomaterials, and a system and devices useful for depositing nanomaterials.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: July 12, 2016
    Assignee: QD VISION, INC.
    Inventors: Seth Coe-Sullivan, Maria J. Anc, Leeann Kim, John E. Ritter, Marshall Cox, Craig Breen, Vladimir Bulovic, Ioannis Kymissis, Robert F. Praino, Jr., Peter T. Kazlas
  • Patent number: 9349975
    Abstract: A composite comprising a first layer comprising a first material including nanoparticles dispersed therein, wherein the first material comprises a material capable of transporting charge, a second layer comprising a second material, and a backing element that is removably attached to the uppermost layer of the composite or the lowermost layer of the composite. In certain preferred embodiments, a least a portion of the nanoparticles include a ligand attached to a surface thereof. Methods are also disclosed. Products including a composite is further provided. Composite materials can be particularly well-suited for use, for example, in products useful in various optical, electronic, optoelectronic, magnetic, or catalytic devices.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: May 24, 2016
    Assignee: QD VISION, INC.
    Inventors: Seth Coe-Sullivan, Maria J. Anc, Jonathan S. Steckel
  • Patent number: 9252013
    Abstract: A method of depositing a nanomaterial onto a donor surface comprises applying a composition comprising nanomaterial to a donor surface. In another aspect of the invention there is provided a method of depositing a nanomaterial onto a substrate. Methods of making a device including nanomaterial are disclosed. An article of manufacture comprising nanomaterial disposed on a backing member is disclosed.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: February 2, 2016
    Assignee: QD VISION, INC.
    Inventors: Seth Coe-Sullivan, Maria J. Anc, LeeAnn Kim, Vladimir Bulovic, Ioannis Kymissis, John E. Ritter, Robert F. Praino, Jr.
  • Publication number: 20160027971
    Abstract: Disclosed herein are wavelength converters and methods for making the same. The wavelength converters include a single layer of a polymeric matrix material, and one or more types of wavelength converting particles. In some embodiments the wavelength converters include first and second types of wavelength converting particles that are distributed in a desired manner within the single layer of polymeric matrix material. Methods of forming such wavelength converters and lighting devices including such wavelength converters are also disclosed.
    Type: Application
    Filed: July 23, 2014
    Publication date: January 28, 2016
    Applicant: OSRAM SYLVANIA INC.
    Inventor: Maria J. Anc
  • Publication number: 20150206747
    Abstract: Methods for depositing nanomaterial onto a substrate are disclosed. Also disclosed are compositions useful for depositing nanomaterial, methods of making devices including nanomaterials, and a system and devices useful for depositing nanomaterials.
    Type: Application
    Filed: December 8, 2014
    Publication date: July 23, 2015
    Inventors: Seth COE-SULLIVAN, Maria j. Anc, Leeann Kim, John E. Ritter, Marshall Cox, Craig Breen, Vladimir Bulovic, Ioannis Kymissis, Robert F. Praino, JR., Peter T. Kazlas
  • Patent number: 9034669
    Abstract: Methods for depositing material and nanomaterial onto a substrate are disclosed. Also disclosed are methods of making devices including nanomaterials, and a system useful for depositing materials and nanomaterials.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: May 19, 2015
    Assignee: QD VISION, INC.
    Inventors: Marshall Cox, LeeAnn Kim, Craig Breen, Maria J. Anc, Seth Coe-Sullivan, Peter T. Kazlas
  • Patent number: 8906804
    Abstract: Methods for depositing nanomaterial onto a substrate are disclosed. Also disclosed are compositions useful for depositing nanomaterial, methods of making devices including nanomaterials, and a system and devices useful for depositing nanomaterials.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: December 9, 2014
    Assignee: QD Vision, Inc.
    Inventors: Seth Coe-Sullivan, Maria J. Anc, LeeAnn Kim, John E. Ritter, Marshall Cox, Craig Breen, Vladimir Bulovic, Ioannis Kymissis, Robert F. Praino, Jr.
  • Publication number: 20140004686
    Abstract: Methods for depositing nanomaterial onto a substrate are disclosed. Also disclosed are compositions useful for depositing nanomaterial, methods of making devices including nanomaterials, and a system and devices useful for depositing nanomaterials.
    Type: Application
    Filed: June 24, 2013
    Publication date: January 2, 2014
    Applicant: QD VISION, INC.
    Inventors: Seth Coe-Sullivan, Maria J. Anc, LeeAnn Kim, John E. Ritter, Marshall Cox, Craig Breen, Vladimir Bulovic, Ioannis Kymissis, Robert F. Praino, JR.
  • Patent number: 8470617
    Abstract: Methods for depositing nanomaterial onto a substrate are disclosed. Also disclosed are compositions useful for depositing nanomaterial, methods of making devices including nanomaterials, and a system and devices useful for depositing nanomaterials.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: June 25, 2013
    Assignee: QD Vision, Inc.
    Inventors: Seth Coe-Sullivan, Maria J. Anc, LeeAnn Kim, John E. Ritter, Marshall Cox, Craig Breen, Vladimir Bulovic, Ioannis Kymissis, Robert F. Praino, Jr., Peter T. Kazlas
  • Patent number: 8455898
    Abstract: There is herein described a LED lighting device utilizing quantum dots in layers on top of an LED chip. The quantum dots layers and the LED chip are arranged with gradient refractive indices, so that the refractive index of each layer is preferably less than the refractive index of the immediately underlying layer or chip. The quantum dots with emission peaks at longer wavelengths are preferably arranged in lower layers closer to the LED chip; while the quantum dots with emission peaks at shorter wavelengths are arranged in higher layers farther from the LED chip.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: June 4, 2013
    Assignee: Osram Sylvania Inc.
    Inventor: Maria J. Anc
  • Publication number: 20130001597
    Abstract: There is herein described a lighting device including at least one LED and a wavelength converter. The wavelength converter includes a supporting plate, a plurality of first host sites and a plurality of second host site. The supporting plate is disposed over the LED. The plurality of the first host sites is disposed directly on a surface of the supporting plate. Each of the plurality of first host sites consists essentially of a first matrix and a plurality of first quantum dots dispersed in the first matrix. The first quantum dots have a first common emission peak wavelength. The plurality of the second host sites is disposed directly on the surface of the supporting plate. Each of the plurality of second host sites consists essentially of a second matrix and a plurality of second quantum dots dispersed in the second matrix. The second quantum dots have a second common emission peak wavelength. The second common emission peak wavelength is different from the first common emission peak wavelength.
    Type: Application
    Filed: June 28, 2011
    Publication date: January 3, 2013
    Applicant: OSRAM SYLVANIA INC.
    Inventors: Maria J. Anc, Kailash Mishra
  • Publication number: 20120248479
    Abstract: There is herein described a LED lighting device utilizing quantum dots in layers on top of an LED chip. The quantum dots layers and the LED chip are arranged with gradient refractive indices, so that the refractive index of each layer is preferably less than the refractive index of the immediately underlying layer or chip. The quantum dots with emission peaks at longer wavelengths are preferably arranged in lower layers closer to the LED chip; while the quantum dots with emission peaks at shorter wavelengths are arranged in higher layers farther from the LED chip.
    Type: Application
    Filed: March 28, 2011
    Publication date: October 4, 2012
    Applicant: OSRAM SYLVANIA INC.
    Inventor: Maria J. Anc
  • Publication number: 20100243053
    Abstract: A photovoltaic device includes a heat transfer material comprising a dispersion of down-conversion quantum dots in a host medium. In certain embodiments, the host medium comprises a liquid or fluid. In certain embodiments, a heat transfer material comprises a dispersion of down-conversion quantum dots in a host medium comprising one or more heat-transfer fluids. A heat transfer material including quantum dots is also disclosed. Such devices and heat transfer materials can be useful for light energy conversion, e.g., in solar cells. Solar cells are also disclosed.
    Type: Application
    Filed: December 22, 2009
    Publication date: September 30, 2010
    Inventors: Seth Coe-Sullivan, Peter T. Kazlas, Jonathan S. Steckel, John R. Linton, Maria J. Anc, John E. Ritter, Marshall Cox
  • Publication number: 20090283743
    Abstract: A composite comprising a first layer comprising a first material including nanoparticles dispersed therein, wherein the first material comprises a material capable of transporting charge, a second layer comprising a second material, and a backing element that is removably attached to the uppermost layer of the composite or the lowermost layer of the composite. In certain preferred embodiments, a least a portion of the nanoparticles include a ligand attached to a surface thereof. Methods are also disclosed. Products including a composite is further provided. Composite materials can be particularly well-suited for use, for example, in products useful in various optical, electronic, optoelectronic, magnetic, or catalytic devices.
    Type: Application
    Filed: March 12, 2009
    Publication date: November 19, 2009
    Inventors: Seth Coe-Sullivan, Maria J. Anc, Jonathan S. Steckel