Patents by Inventor Marie Denison

Marie Denison has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9698075
    Abstract: A microelectronic device includes semiconductor device with a component at a front surface of the semiconductor device and a backside heat spreader layer on a back surface of the semiconductor device. The backside heat spreader layer is 100 nanometers to 3 microns thick, has an in-plane thermal conductivity of at least 150 watts/meter-° K, and an electrical resistivity less than 100 micro-ohm-centimeters.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: July 4, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Archana Venugopal, Marie Denison, Luigi Colombo, Hiep Nguyen, Darvin Edwards
  • Patent number: 9660021
    Abstract: A semiconductor device having a vertical drain extended MOS transistor may be formed by forming deep trench structures to define vertical drift regions of the transistor, so that each vertical drift region is bounded on at least two opposite sides by the deep trench structures. The deep trench structures are spaced so as to form RESURF regions for the drift region. Trench gates are formed in trenches in the substrate over the vertical drift regions. The body regions are located in the substrate over the vertical drift regions.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: May 23, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Marie Denison, Sameer Pendharkar, Guru Mathur
  • Patent number: 9653388
    Abstract: A electronic multi-output device having a substrate including a pad and pins. A composite first chip has a first and a second transistor integrated so that the first terminals of the transistors are merged into a common terminal on one chip surface. Patterned second and third terminals are on the opposite chip surface. The common first terminal is attached to the substrate pad. The second terminals are connected by discrete first and second metal clips to respective substrate pins. A composite second chip has a third and a fourth transistor integrated so that the second terminals of the transistors are merged into a common terminal on one chip surface. Patterned first and third terminals are on the opposite chip surface. The second chip is flipped to be vertically attached with its first terminals to the first and second clips, respectively. The third terminals are connected by discrete clips to respective substrate pins. The common second terminal is connected by a common clip to a substrate pin.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: May 16, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Marie Denison, Brian Ashley Carpenter, Osvaldo Jorge Lopez, Juan Alejandro Herbsommer, Jonathan Noquil
  • Publication number: 20170125513
    Abstract: A semiconductor device having a vertical drain extended MOS transistor may be formed by forming deep trench structures to define vertical drift regions of the transistor, so that each vertical drift region is bounded on at least two opposite sides by the deep trench structures. The deep trench structures are spaced so as to form RESURF regions for the drift region. Trench gates are formed in trenches in the substrate over the vertical drift regions. The body regions are located in the substrate over the vertical drift regions.
    Type: Application
    Filed: January 11, 2017
    Publication date: May 4, 2017
    Inventors: Marie DENISON, Sameer PENDHARKAR, Guru MATHUR
  • Publication number: 20170084737
    Abstract: An integrated circuit and method having an extended drain MOS transistor with a buried drift region, a drain end diffused link between the buried drift region and the drain contact, and a concurrently formed channel end diffused link between the buried drift region and the channel, where the channel end diffused link is formed by implanting through segmented areas to dilute the doping to less than two-thirds the doping in the drain end diffused link.
    Type: Application
    Filed: November 30, 2016
    Publication date: March 23, 2017
    Inventors: Philip Leland HOWER, Sameer PENDHARKAR, Marie DENISON
  • Patent number: 9577033
    Abstract: A semiconductor device having a vertical drain extended MOS transistor may be formed by forming deep trench structures to define vertical drift regions of the transistor, so that each vertical drift region is bounded on at least two opposite sides by the deep trench structures. The deep trench structures are spaced so as to form RESURF regions for the drift region. Trench gates are formed in trenches in the substrate over the vertical drift regions. The body regions are located in the substrate over the vertical drift regions.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: February 21, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Marie Denison, Sameer Pendharkar, Guru Mathur
  • Patent number: 9543149
    Abstract: An integrated circuit and method having an extended drain MOS transistor with a buried drift region, a drain end diffused link between the buried drift region and the drain contact, and a concurrently formed channel end diffused link between the buried drift region and the channel, where the channel end diffused link is formed by implanting through segmented areas to dilute the doping to less than two-thirds the doping in the drain end diffused link.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: January 10, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Philip Leland Hower, Sameer Pendharkar, Marie Denison
  • Patent number: 9508869
    Abstract: An integrated circuit and method having a JFET with a buried drift layer and a buried channel in which the buried channel is formed by implanting through segmented implant areas so that the doping density of the buried channel is between 25 percent and 50 percent of the doping density of the buried drift layer.
    Type: Grant
    Filed: October 26, 2015
    Date of Patent: November 29, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Philip Leland Hower, Sameer Pendharkar, Marie Denison
  • Patent number: 9496198
    Abstract: A microelectronic device includes semiconductor device with a component at a front surface of the semiconductor device and a backside heat spreader layer on a back surface of the semiconductor device. The backside heat spreader layer is 100 nanometers to 3 microns thick, has an in-plane thermal conductivity of at least 150 watts/meter-° K, and an electrical resistivity less than 100 micro-ohm-centimeters.
    Type: Grant
    Filed: September 28, 2014
    Date of Patent: November 15, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Archana Venugopal, Marie Denison, Luigi Colombo, Hiep Nguyen, Darvin Edwards
  • Publication number: 20160322277
    Abstract: A microelectronic device includes semiconductor device with a component at a front surface of the semiconductor device and a backside heat spreader layer on a back surface of the semiconductor device. The backside heat spreader layer is 100 nanometers to 3 microns thick, has an in-plane thermal conductivity of at least 150 watts/meter-° K, and an electrical resistivity less than 100 micro-ohm-centimeters.
    Type: Application
    Filed: July 15, 2016
    Publication date: November 3, 2016
    Inventors: Archana Venugopal, Marie Denison, Luigi Colombo, Hiep Nguyen, Darvin Edwards
  • Publication number: 20160300775
    Abstract: A microelectronic device includes a heat spreader layer on an electrode of a component and a metal interconnect on the heat spreader layer. The heat spreader layer is disposed above a top surface of a substrate of the semiconductor device. The heat spreader layer is 100 nanometers to 3 microns thick, has an in-plane thermal conductivity of at least 150 watts/meter-° K, and an electrical resistivity less than 100 micro-ohm-centimeters.
    Type: Application
    Filed: June 16, 2016
    Publication date: October 13, 2016
    Inventors: Archana Venugopal, Marie Denison, Luigi Colombo, Sameer Pendharkar
  • Publication number: 20160300946
    Abstract: An integrated circuit containing an extended drain MOS transistor which has a drift layer, an upper RESURF layer over and contacting an upper surface of the drift layer, and a buried drain extension below the drift layer which is electrically connected to the drift layer at the drain end and separated from the drift layer at the channel end. A lower RESURF layer may be formed between the drift layer and the buried drain extension at the channel end. Any of the upper RESURF layer, the drift layer, the lower RESURF layer and the buried drain extension may have a graded doping density from the drain end to the channel end. A process of forming an integrated circuit containing an extended drain MOS transistor which has the drift layer, the upper RESURF layer, and the buried drain extension.
    Type: Application
    Filed: June 15, 2016
    Publication date: October 13, 2016
    Inventors: Marie DENISON, Philip L. HOWER, Sameer PENDHARKAR
  • Patent number: 9397023
    Abstract: A microelectronic device includes a heat spreader layer on an electrode of a component and a metal interconnect on the heat spreader layer. The heat spreader layer is disposed above a top surface of a substrate of the semiconductor device. The heat spreader layer is 100 nanometers to 3 microns thick, has an in-plane thermal conductivity of at least 150 watts/meter-° K, and an electrical resistivity less than 100 micro-ohm-centimeters.
    Type: Grant
    Filed: September 28, 2014
    Date of Patent: July 19, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Archana Venugopal, Marie Denison, Luigi Colombo, Sameer Pendharkar
  • Patent number: 9397211
    Abstract: An integrated circuit containing an extended drain MOS transistor which has a drift layer, an upper RESURF layer over and contacting an upper surface of the drift layer, and a buried drain extension below the drift layer which is electrically connected to the drift layer at the drain end and separated from the drift layer at the channel end. A lower RESURF layer may be formed between the drift layer and the buried drain extension at the channel end. Any of the upper RESURF layer, the drift layer, the lower RESURF layer and the buried drain extension may have a graded doping density from the drain end to the channel end. A process of forming an integrated circuit containing an extended drain MOS transistor which has the drift layer, the upper RESURF layer, and the buried drain extension.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: July 19, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Marie Denison, Philip L. Hower, Sameer Pendharkar
  • Patent number: 9373571
    Abstract: An electronic multi-output device has a substrate including a first pad, a second pad and a plurality of pins. A first chip with a first transistor has a first terminal on one chip surface and a second and third terminals on the opposite chip surface. The first chip with its first terminal is tied to the first pad. A second chip with a second transistor has a first terminal on one chip surface and a second and third terminals on the opposite chip surface. The second chip with its first terminal is tied to the second pad. The second terminals are connected by a discrete first metal clip and a second metal clip to respective substrate pins. A composite third chip has a third and a fourth transistor integrated so that the first terminals of the transistors are on one chip surface. The second terminals are merged into a common terminal. The patterned third terminals are on the opposite chip surface. The first terminals are vertically attached to the first and second metal clips, respectively.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: June 21, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Marie Denison, Brian Ashley Carpenter, Osvaldo Jorge Lopez, Juan Alejandro Herbsommer, Jonathan Noquil
  • Publication number: 20160163828
    Abstract: An integrated circuit and method having an extended drain MOS transistor with a buried drift region, a drain diffused link, a channel diffused link, and an isolation link which electrically isolated the source, where the isolation diffused link is formed by implanting through segmented areas to dilute the doping to less than two-thirds the doping in the drain diffused link.
    Type: Application
    Filed: February 2, 2016
    Publication date: June 9, 2016
    Inventors: Philip Leland Hower, Sameer Pendharkar, Marie Denison
  • Publication number: 20160163855
    Abstract: An integrated circuit and method having an extended drain MOS transistor with a buried drift region, a drain diffused link, a channel diffused link, and an isolation link which electrically isolated the source, where the isolation diffused link is formed by implanting through segmented areas to dilute the doping to less than two-thirds the doping in the drain diffused link.
    Type: Application
    Filed: February 2, 2016
    Publication date: June 9, 2016
    Inventors: Philip Leland Hower, Sameer Pendharkar, Marie Denison
  • Patent number: 9355991
    Abstract: A method for fabricating an electronic multi-output device. A substrate having a pad and pins is provided. A first chip is provided having a first and a second transistor integrated so that the first terminals of the transistors are merged into a common terminal on one chip surface and the patterned second and third terminals are on the opposite chip surface. The common first terminal is attached to the substrate pad. A driver and control chip is attached to the substrate pad adjacent to the first chip. The second terminals of the first and second transistors are connected by discrete first and second gang clips to respective substrate pins. A second chip is provided having a third and a fourth transistor integrated so that the second terminals of the transistors are merged into a common terminal on one chip surface. Patterned first and third terminals are on the opposite chip surface. The second chip is flipped to attach the first terminals vertically to the first and second gang clips.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: May 31, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Marie Denison, Brian Ashley Carpenter, Osvaldo Jorge Lopez, Juan Alejandro Herbsommer, Jonathan Noquil
  • Publication number: 20160093552
    Abstract: A microelectronic device includes semiconductor device with a component at a front surface of the semiconductor device and a backside heat spreader layer on a back surface of the semiconductor device. The backside heat spreader layer is 100 nanometers to 3 microns thick, has an in-plane thermal conductivity of at least 150 watts/meter-° K, and an electrical resistivity less than 100 micro-ohm-centimeters.
    Type: Application
    Filed: September 28, 2014
    Publication date: March 31, 2016
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Archana Venugopal, Marie Denison, Luigi Colombo, Hiep Nguyen, Darvin Edwards
  • Publication number: 20160093551
    Abstract: A microelectronic device includes a heat spreader layer on an electrode of a component and a metal interconnect on the heat spreader layer. The heat spreader layer is disposed above a top surface of a substrate of the semiconductor device. The heat spreader layer is 100 nanometers to 3 microns thick, has an in-plane thermal conductivity of at least 150 watts/meter-° K, and an electrical resistivity less than 100 micro-ohm-centimeters.
    Type: Application
    Filed: September 28, 2014
    Publication date: March 31, 2016
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Archana Venugopal, Marie Denison, Luigi Colombo, Sameer Pendharkar