Patents by Inventor Marie Denison

Marie Denison has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8426281
    Abstract: A semiconductor device 100 comprising source and drain regions 105, 107, and insulating region 115 and a plate structure 140. The source and drain regions are on or in a semiconductor substrate 110. The insulating region is on or in the semiconductor substrate and located between the source and drain regions. The insulating region has a thin layer 120 and a thick layer 122. The thick layer includes a plurality of insulating stripes 132 that are separated from each other and that extend across a length 135 between the source and the drain regions. The plate structure is located between the source and the drain regions, wherein the plate structure is located on the thin layer and portions of the thick layer, the plate structure having one or more conductive bands 143 that are directly over individual ones of the plurality of insulating stripes.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: April 23, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Marie Denison, Seetharaman Sridhar, Sameer Pendharkar
  • Publication number: 20130062996
    Abstract: A planar integrated MEMS device has a piezoelectric element on a dielectric isolation layer over a flexible element attached to a proof mass. The piezoelectric element contains a ferroelectric element with a perovskite structure formed over an isolation dielectric. At least two electrodes are formed on the ferroelectric element. An upper hydrogen barrier is formed over the piezoelectric element. Front side singulation trenches are formed at a periphery of the MEMS device extending into the semiconductor substrate. A DRIE process removes material from the bottom side of the substrate to form the flexible element, removes material from the substrate under the front side singulation trenches, and forms the proof mass from substrate material. The piezoelectric element overlaps the flexible element.
    Type: Application
    Filed: September 12, 2011
    Publication date: March 14, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kezhakkedath R. Udayakumar, Marie Denison, Ted S. Moise
  • Publication number: 20130043205
    Abstract: An apparatus includes an interior component, movably attached to an exterior component. Rotation of the exterior component causes an actuation piece to activate a circuit provided to either the interior or exterior component. Activation of the circuit causes sound to be played from a speaker provided to either the interior or exterior component. Also included is a hollow portion provided to the interior component, of sufficient diameter to fit a bottle top therein. Also, the apparatus includes a grip, provided on the hollow portion and operable to fixedly engage the bottle top at least when the exterior component is rotated. Rotation of the exterior component relative to the interior component causes engagement of the interior component by the exterior component, such that the interior component is caused to rotate in concert with the exterior component, further causing rotation of the bottle top which the grip fixedly engages.
    Type: Application
    Filed: August 16, 2011
    Publication date: February 21, 2013
    Inventors: Camilla Marie Denison, Buford Harrison Shumaker
  • Publication number: 20130032922
    Abstract: An integrated circuit containing a voltage divider having an upper resistor of unsilicided gate material over field oxide around a central opening and a drift layer under the upper resistor, an input terminal coupled to an input node of the upper resistor adjacent to the central opening in the field oxide and coupled to the drift layer through the central opening, a sense terminal coupled to a sense node on the upper resistor opposite from the input node, a lower resistor with a sense node coupled to the sense terminal and a reference node, and a reference terminal coupled to the reference node. A process of forming the integrated circuit containing the voltage divider.
    Type: Application
    Filed: August 6, 2012
    Publication date: February 7, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Hideaki Kawahara, Marie Denison, Sameer Pendharkar, Philip L. Hower, John Lin, Robert A. Neidorff
  • Publication number: 20130032863
    Abstract: An integrated circuit containing a gate controlled voltage divider having an upper resistor on field oxide in series with a transistor switch in series with a lower resistor. A resistor drift layer is disposed under the upper resistor, and the transistor switch includes a switch drift layer adjacent to the resistor drift layer, separated by a region which prevents breakdown between the drift layers. The switch drift layer provides an extended drain or collector for the transistor switch. A sense terminal of the voltage divider is coupled to a source or emitter node of the transistor and to the lower resistor. An input terminal is coupled to the upper resistor and the resistor drift layer. A process of forming the integrated circuit containing the gate controlled voltage divider.
    Type: Application
    Filed: August 6, 2012
    Publication date: February 7, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Hideaki Kawahara, Marie Denison, Sameer Pendharkar, Philip L. Hower, John Lin, Robert A. Neidorff
  • Patent number: 8253193
    Abstract: An integrated circuit containing an MOS transistor with a trenched gate abutting an isolation dielectric layer over a drift region. The body well and source diffused region overlap the bottom surface of the gate trench. An integrated circuit containing an MOS transistor with a first trenched gate abutting an isolation dielectric layer over a drift region, and a second trenched gate located over a heavily doped buried layer. The buried layer is the same conductivity type as the drift region. A process of forming an integrated circuit containing an MOS transistor, which includes an isolation dielectric layer over a drift region of a drain of the transistor, and a gate formed in a gate trench which abuts the isolation dielectric layer. The gate trench is formed by removing substrate material adjacent to the isolation dielectric layer.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: August 28, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Marie Denison, Sameer Pendharkar, Binghua Hu, Taylor Rice Efland, Sridhar Seetharaman
  • Publication number: 20120112277
    Abstract: An integrated circuit containing a dual drift layer extended drain MOS transistor with an upper drift layer contacting a lower drift layer along at least 75 percent of a common length of the two drift layers. An average doping density in the lower drift layer is between 2 and 10 times an average doping density in the upper drift layer. A process of forming an integrated circuit containing a dual drift layer extended drain MOS transistor with a lower drift extension under the body region and an isolation link which electrically isolates the body region, using an epitaxial process. A process of forming an integrated circuit containing a dual drift layer extended drain MOS transistor with a lower drift extension under the body region and an isolation link which electrically isolates the body region, on a monolithic substrate.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 10, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Marie Denison, Sameer Pendharkar, Philip L. Hower
  • Patent number: 8173510
    Abstract: An integrated circuit (200) includes one of more transistors (210) on or in a substrate (10) having semiconductor surface layer, the surface layer having a top surface. At least one of the transistors are drain extended metal-oxide-semiconductor (DEMOS) transistor (210). The DEMOS transistor includes a drift region (14) in the surface layer having a first dopant type, a field dielectric (23) in or on a portion of the surface layer, and a body region of a second dopant type (16) within the drift region (14). The body region (16) has a body wall extending from the top surface of the surface layer downwards along at least a portion of a dielectric wall of an adjacent field dielectric region. A gate dielectric (21) is on at least a portion of the body wall. An electrically conductive gate electrode (22) is on the gate dielectric (21) on the body wall.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: May 8, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Marie Denison, Taylor Rice Efland
  • Publication number: 20120104493
    Abstract: An integrated circuit containing an extended drain MOS transistor with deep semiconductor (SC) RESURF trenches in the drift region, in which each deep SC RESURF trench has a semiconductor RESURF layer at a sidewall of the trench contacting the drift region. The semiconductor RESURF layer has an opposite conductivity type from the drift region. The deep SC RESURF trenches have depth:width ratios of at least 5:1, and do not extend through a bottom surface of the drift region. A process of forming an integrated circuit with deep SC RESURF trenches in the drift region by etching undersized trenches and counterdoping the sidewall region to form the semiconductor RESURF layer. A process of forming an integrated circuit with deep SC RESURF trenches in the drift region by etching trenches and growing an epitaxial layer on the sidewall region to form the semiconductor RESURF layer.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 3, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Marie Denison, Sameer Pendhakar
  • Publication number: 20120104497
    Abstract: An integrated circuit on an SOI substrate containing an extended drain MOS transistor with a through substrate diode in a drain (n-channel) or body region (p-channel) so that the drain or body region is coupled to the handle wafer through a p-n junction. An integrated circuit on an SOI substrate containing an extended drain MOS transistor with a through substrate diode in a drain (n-channel) or body region (p-channel) coupled to the handle wafer through a p-n junction, that is electrically isolated from the drain or body region. A process of forming an integrated circuit on an SOI substrate containing an extended drain MOS transistor with a through substrate diode in a drain (n-channel) or body region (p-channel).
    Type: Application
    Filed: October 26, 2011
    Publication date: May 3, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Marie Denison, Philip L. Hower, Sameer Pendharkar
  • Publication number: 20120102443
    Abstract: A process of operating a computer system to create a subcircuit model of an N/P configurable extended drain MOS transistor in which the subcircuit model includes an npn bipolar transistor and a pnp bipolar transistor which correspond to current paths through n-channel drift lanes and p-channel drift lanes during dual mode operation. A process of operating a computer system to simulate the behavior of an electronic circuit including a N/P configurable extended drain MOS transistor in which a subcircuit model of the N/P configurable extended drain MOS transistor includes an npn bipolar transistor and a pnp bipolar transistor which correspond to current paths through n-channel drift lanes and p-channel drift lanes during dual mode operation. A computer readable medium storing an electronic circuit simulation program that generates a simulation output of the behavior of an electronic circuit including a N/P configurable extended drain MOS transistor.
    Type: Application
    Filed: October 20, 2011
    Publication date: April 26, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Yong LIU, Keith R. GREEN, Marie DENISON, Yizhong XIE
  • Publication number: 20120098098
    Abstract: An integrated circuit containing a stacked bipolar transistor which includes two bipolar transistors connected in series is disclosed. Each bipolar transistor includes a breakdown inducing feature. The breakdown inducing features have reflection symmetry with respect to each other. A process for forming an integrated circuit containing a stacked bipolar transistor which includes two bipolar transistors connected in series, with breakdown inducing features having reflection symmetry, is also disclosed.
    Type: Application
    Filed: October 20, 2011
    Publication date: April 26, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sameer P. Pendharkar, Marie Denison, Yongxi Zhang
  • Publication number: 20120074458
    Abstract: Fashioning a quasi-vertical gated NPN-PNP (QVGNP) electrostatic discharge (ESD) protection device is disclosed. The QVGNP ESD protection device has a well having one conductivity type formed adjacent to a deep well having another conductivity type. The device has a desired holding voltage and a substantially homogenous current flow, and is thus highly robust. The device can be fashioned in a cost effective manner by being formed during a BiCMOS or Smart Power fabrication process.
    Type: Application
    Filed: June 28, 2011
    Publication date: March 29, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Marie Denison, Pinghai Hao
  • Patent number: 8124482
    Abstract: An integrated circuit containing an MOS transistor with a trenched gate abutting an isolation dielectric layer over a drift region. The body well and source diffused region overlap the bottom surface of the gate trench. An integrated circuit containing an MOS transistor with a first trenched gate abutting an isolation dielectric layer over a drift region, and a second trenched gate located over a heavily doped buried layer. The buried layer is the same conductivity type as the drift region. A process of forming an integrated circuit containing an MOS transistor, which includes an isolation dielectric layer over a drift region of a drain of the transistor, and a gate formed in a gate trench which abuts the isolation dielectric layer. The gate trench is formed by removing substrate material adjacent to the isolation dielectric layer.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: February 28, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Marie Denison, Sameer Pendharkar, Binghua Hu, Taylor Rice Efland, Sridhar Seetharaman
  • Publication number: 20110306172
    Abstract: One embodiment relates to an integrated circuit that includes a lateral trench MOSFET disposed in a semiconductor body. The lateral trench MOSFET includes source and drain regions having a body region therebetween. A gate electrode region is disposed in a trench that extends beneath the surface of the semiconductor body at least partially between the source and drain. A gate dielectric separates the gate electrode region from the semiconductor body. In addition, a field plate region in the trench is coupled to the gate electrode region, and a field plate dielectric separates the field plate region from the semiconductor body. Other integrated circuits and methods are also disclosed.
    Type: Application
    Filed: August 23, 2011
    Publication date: December 15, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Marie Denison
  • Publication number: 20110275210
    Abstract: An electronic device has a plurality of trenches formed in a semiconductor layer. A vertical drift region is located between and adjacent the trenches. An electrode is located within each trench, the electrode having a gate electrode section and a field plate section. A graded field plate dielectric having increased thickness at greater depth is located between the field plate section and the vertical drift region.
    Type: Application
    Filed: July 21, 2011
    Publication date: November 10, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Marie Denison, Sameer Pendharkar, Philip L. Hower, John Lin
  • Patent number: 8004051
    Abstract: One embodiment relates to an integrated circuit that includes a lateral trench MOSFET disposed in a semiconductor body. The lateral trench MOSFET includes source and drain regions having a body region therebetween. A gate electrode region is disposed in a trench that extends beneath the surface of the semiconductor body at least partially between the source and drain. A gate dielectric separates the gate electrode region from the semiconductor body. In addition, a field plate region in the trench is coupled to the gate electrode region, and a field plate dielectric separates the field plate region from the semiconductor body. Other integrated circuits and methods are also disclosed.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: August 23, 2011
    Assignee: Texas Instruments Incorporated
    Inventor: Marie Denison
  • Patent number: 7989853
    Abstract: A dual channel JFET which can be integrated in an IC without adding process steps is disclosed. Pinch-off voltage is determined by lateral width of a first, vertical, channel near the source contact. Maximum drain voltage is determined by drain to gate separation and length of a second, horizontal, channel under the gate. Pinch-off voltage and maximum drain potential are dependent on lateral dimensions of the drain and gate wells and may be independently optimized. A method of fabricating the dual channel JFET is also disclosed.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: August 2, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Pinghai Hao, Sameer Pendharkar, Philip L. Hower, Marie Denison
  • Publication number: 20110169564
    Abstract: An integrated circuit is disclosed having a semiconductor component comprising a first p-type region and a first n-type region adjoining the first p-type region, which together form a first pn junction having a breakdown voltage. A further n-type region adjoining the first p-type region or a further p-type region adjoining the first n-type region is provided, the first p-type or n-type region and the further n-type or p-type region adjoining the latter together forming a further pn junction having a further breakdown voltage, the first pn junction and the further pn junction being connected or connectable to one another in such a way that, in the case of an overloading of the semiconductor component, on account of a current loading of the first pn junction, first of all the further pn junction breaks down.
    Type: Application
    Filed: March 28, 2011
    Publication date: July 14, 2011
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Nils Jensen, Marie Denison
  • Publication number: 20110158439
    Abstract: A capacitive microphone transducer integrated into an integrated circuit includes a fixed plate and a membrane formed in or above an interconnect region of the integrated circuit. A process of forming an integrated circuit containing a capacitive microphone transducer includes etching access trenches through the fixed plate to a region defined for the back cavity, filling the access trenches with a sacrificial material, and removing a portion of the sacrificial material from a back side of the integrated circuit.
    Type: Application
    Filed: December 16, 2010
    Publication date: June 30, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Marie Denison, Brian E. Goodlin, Wei-Yan Shih, Lance W. Barron