Patents by Inventor Mario Gerlach

Mario Gerlach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240091065
    Abstract: An apparatus for refractive lens surgery on the human eye, including: a laser device for separating tissue of the eye lens and capsular bag in a focus of pulsed laser radiation, a focus positioning device for setting and adjusting a location of the focus, a measuring apparatus for gathering the relative position of the eye lens and capsular bag, and a control device which reads data from the measuring apparatus and controls the focus positioning device, and which is designed to define and specify a pattern for the focus to the focus positioning device, the pattern separating tissue layers in the eye lens for the purposes of generating an accommodation space for an intralenticular intraocular lens. The accommodation space includes a cutout for a dimensionally-stable lens body of the intraocular lens and a peripheral fastening region for fixing the dimensionally-stable lens body at a single, predetermined, axial position.
    Type: Application
    Filed: October 9, 2020
    Publication date: March 21, 2024
    Inventor: Mario GERLACH
  • Publication number: 20240094558
    Abstract: An ophthalmic lens includes a lens body with a predetermined refractive effect and a ring-shaped, diffractive structuring. The ring-shaped, diffractive structuring (4-4) has a waveform in the radial direction which differs from a sinusoidal waveform by an asymmetry and/or a flattening and/or a periodicity, wherein the asymmetry and/or flattening and/or periodicity is constant or changes strictly monotonically over the entire radial curve of the waveform. Further, a method for designing an ophthalmic lens is disclosed.
    Type: Application
    Filed: December 3, 2021
    Publication date: March 21, 2024
    Inventor: Mario Gerlach
  • Publication number: 20230414316
    Abstract: The invention relates to an ophthalmological implant (100) with an optically imaging element (110), a digital product identifier (130) being arranged on the optically imaging element. The invention additionally relates to a corresponding method for producing the implant and to a machine reading system (200) for detecting and decoding the digital product identifier. The aim of the invention is to provide an ophthalmological implant and a method for producing same, said method allowing a unique and complete product identifier and a check thereof using simple means at any point in time. This is achieved by an ophthalmological implant with a digital product identifier (130) which is implemented by means of an encoded point grid (135) of identifier points (57), said point grid being machine-readable in the visible light range and having one irregular semi-random character.
    Type: Application
    Filed: November 10, 2021
    Publication date: December 28, 2023
    Inventors: Mario Gerlach, Benjamin Schreiber, Jennifer-Magdalena Masch, Thorben Badur, Andre Wolfstein
  • Publication number: 20230200978
    Abstract: An ophthalmo-surgical injector includes an injector body, a tip with which an intraocular lens can be pressed out of the injector, a first plunger mounted longitudinally displaceably on the injector body and having a first projection, a shaft rotatably mounted in the injector body and having a first guide and a second guide which are each wound about the shaft, and a second plunger mounted longitudinally displaceably on the injector body and having a second projection. The first projection engages in the first guide, such that the first plunger is configured to effect, with a longitudinal displacement of the first plunger, a rotation of the shaft about a longitudinal axis of the injector body, and the second projection engages in the second guide, as a result of which the shaft is configured to effect, with the rotation effected by the first plunger, a longitudinal displacement of the second plunger.
    Type: Application
    Filed: February 28, 2023
    Publication date: June 29, 2023
    Inventor: Mario Gerlach
  • Publication number: 20230190453
    Abstract: A diffractive eye lens having a front side, a rear side and an optical main axis, wherein the front side and/or the rear side has a spherical, an aspherical, a spherical-toric or an aspherical-toric basic shape, and the front side and/or the rear side has a diffractive optical structure. The diffractive eye lens allows for color correction and simultaneously improves visual properties by reducing a halo. The diffractive optical structure in a first lens region is designed such that, at a design wavelength, there is a significant diffraction efficiency for a phase deviation between the first main sub-zones of more than one wavelength and, for the first lens region, On average over all diffraction zones, a proportion of the main sub-zones on the diffraction zones is for example at least 94%, at least 95% and at best nearly 100%.
    Type: Application
    Filed: February 8, 2021
    Publication date: June 22, 2023
    Inventor: Mario Gerlach
  • Patent number: 11583391
    Abstract: An artificial eye lens having an integral optical part which has, viewed in the direction of an optical principal axis of the eye lens, a first optical side and an opposite, second optical side. The optical part is formed with a structure having birefringence, where the birefringent structure in the integral optical part is formed as a laser structure. A method for producing an artificial eye lens, where the birefringent structure is produced with a laser apparatus, and a pulsed laser beam having a pulse length of between 100 fs and 20 ps, a wavelength of between 320 nm and 1100 nm, a pulse repetition rate of between 1 kHz and 10 MHz, a focus diameter of less than 5 ?m, and a power density of greater than 106 W/cm2.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: February 21, 2023
    Assignee: Carl Zeiss Meditec AG
    Inventors: Michael Kaschke, Manfred Dick, Mario Gerlach
  • Publication number: 20220233303
    Abstract: An ophthalmological implant including an imaging optical element, and a haptic with a haptic root. Also, a corresponding method for producing an ophthalmological implant and a characterization system for identifying an ophthalmological implant for example an intraocular lens. The implant includes an unambiguous label and hence an unambiguous and reliable identification option. The label is not able to be mixed-up and is possible with minimal additional technical outlay. The implant includes a rotationally symmetric structural code of identification data of the ophthalmological implant arranged on the haptic root and/or the region of the haptic proximate the haptic root. Also, a method for producing an ophthalmological implant, in which the implant receives, directly during or after the forming, a rotationally symmetric structural code of identification data.
    Type: Application
    Filed: May 13, 2020
    Publication date: July 28, 2022
    Applicant: Carl Zeiss Meditec AG
    Inventor: Mario GERLACH
  • Patent number: 11369517
    Abstract: A device for machining an object by laser radiation, by photodisruption. The device includes an observation device for imaging the object and a laser scanning device by which the laser radiation is passed over a predetermined sector of the object for scanning the sector. The device includes the observation device with a first lens for imaging the object; the laser scanning device with a second lens, through which the laser radiation is guided, in which both lenses with regard to the dimension of the regions to be produced in the images and/or with regard to their focal intercept are different from each other. The device alternately images the respective region of the object in a first operating mode by the first lens and in a second operating mode by the second lens. It is thus possible to use in both operating modes a lens adapted to the intended imaging purpose.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: June 28, 2022
    Assignee: Carl Zeiss Meditec AG
    Inventors: Marco Hanft, Dirk Muehlhoff, Mario Gerlach, Elke Ebert
  • Patent number: 11344405
    Abstract: The invention relates to an artificial eye lens comprising an optical part, which has a first optical side as viewed in a direction of an optical principal axis of the artificial eye lens and an opposite second optical side, wherein a structure with at least one depression is formed in a haptic arrangement of the artificial eye lens and/or in a surround that surrounds the optical part at least in certain areas and that differs from the haptic arrangement, wherein the structure is formed as a micro-perforation with a multiplicity of perforation zones and at least some perforation zones are filled at least in certain areas with at least one medicament for the purposes of producing a medicament repository. The invention also relates to a method for producing such an artificial eye lens.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: May 31, 2022
    Assignee: Carl Zeiss Meditec AG
    Inventors: Michael Kaschke, Manfred Dick, Mario Gerlach
  • Patent number: 11298222
    Abstract: An artificial eye lens (1) having an optical part (2) which has a first optical side (4) and an opposite, second optical side (5). The optical part (2) has a diffractive grating structure that contributes to an optical imaging property of the optical part (2). The diffractive grating structure is an amplitude grating (6) formed in the optical part (2) as a laser structure. A method for producing an artificial eye lens (1) where the amplitude grating (6) is produced with a laser apparatus (17), and a pulsed laser beam (22) having a pulse length of between 100 fs and 20 ps, a wavelength of between 320 nm and 1100 nm, a pulse repetition rate of between 1 kHz and 10 MHz, a focus diameter of less than 5 ?m, and a power density of greater than 106 W/cm2.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: April 12, 2022
    Inventors: Michael Kaschke, Manfred Dick, Mario Gerlach
  • Patent number: 11071648
    Abstract: The invention relates to a method for forming curved cuts in a transparent material, in particular in the cornea, by the creation of optical perforations in said material using laser radiation that is focused in the material. The focal point is displaced three-dimensionally to form the cut by lining up the optical perforations. The focal point is displaced in a first spatial direction by a displaceable lens and said focal directions, in such a way that it follows the contours of the cut, which lie on a plane that is substantially perpendicular to the first spatial direction.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: July 27, 2021
    Assignee: Carl Zeiss Meditec AG
    Inventors: Dirk Muehlhoff, Mario Gerlach, Markus Sticker, Carsten Lang, Mark Bischoff, Michael Bergt
  • Patent number: 11058585
    Abstract: A scanning device for focusing a beam of rays in defined regions of a defined volume, comprising an input optics wherein the beam of rays penetrates first, having at least one first optical element; a focusing optics for focusing the beam of rays exiting from the input optics; and a deflecting device arranged between the first optical element and the focusing optics, for deflecting the beam of rays after it has passed through the first optical element, based on a position of the focus to be adjusted in lateral direction. In order to adjust the position of the focus of the beam of rays in the direction of the beam of rays, and optical element of the input optics can be displaced relative to the deflecting device.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: July 13, 2021
    Assignee: Carl Zeiss Meditec AG
    Inventors: Marco Hanft, Dirk Muehlhoff, Mark Bischoff, Mario Gerlach
  • Publication number: 20210169640
    Abstract: An artificial eye lens having an integral optical part which has, viewed in the direction of an optical principal axis of the eye lens, a first optical side and an opposite, second optical side. The optical part is formed with a structure having birefringence, where the birefringent structure in the integral optical part is formed as a laser structure. A method for producing an artificial eye lens, where the birefringent structure is produced with a laser apparatus, and a pulsed laser beam having a pulse length of between 100 fs and 20 ps, a wavelength of between 320 nm and 1100 nm, a pulse repetition rate of between 1 kHz and 10 MHz, a focus diameter of less than 5 ?m, and a power density of greater than 106 W/cm2.
    Type: Application
    Filed: May 17, 2018
    Publication date: June 10, 2021
    Inventors: Michael KASCHKE, Manfred DICK, Mario GERLACH
  • Publication number: 20210161655
    Abstract: The invention relates to an artificial eye lens comprising an optical part, which has a first optical side as viewed in a direction of an optical principal axis of the artificial eye lens and an opposite second optical side, wherein a structure with at least one depression is formed in a haptic arrangement of the artificial eye lens and/or in a surround that surrounds the optical part at least in certain areas and that differs from the haptic arrangement, wherein the structure is formed as a micro-perforation with a multiplicity of perforation zones and at least some perforation zones are filled at least in certain areas with at least one medicament for the purposes of producing a medicament repository. The invention also relates to a method for producing such an artificial eye lens.
    Type: Application
    Filed: May 17, 2018
    Publication date: June 3, 2021
    Inventors: Michael KASCHKE, Manfred DICK, Mario GERLACH
  • Patent number: 10898381
    Abstract: A method for precise working of material, particularly organic tissue, comprises the step of providing laser pulses with a pulse length between 50 fs and 1 ps and with a pulse frequency from 50 kHz to 1 MHz and with a wavelength between 600 and 2000 nm for acting on the material to be worked. Apparatus, in accordance with the invention, for precise working of material, particularly organic tissue comprising a pulsed laser, wherein the laser has a pulse length between 50 fs and 1 ps and with a pulse frequency of from 50 kHz to 1 MHz is also described.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: January 26, 2021
    Assignee: Carl Zeiss Meditec AG
    Inventors: Mark Bendett, Mark Bischoff, Mario Gerlach, Dirk Mühlhoff
  • Patent number: 10792148
    Abstract: An intraocular lens is provided. The intraocular lens includes an optical part and an adjoining haptic part. The optical part includes an optically imaging element and a telescope, the entire telescope being integrally formed and being integrated in the optical imaging element. The optically imaging element has a convexly-curved front side and a concavely-curved rear side. Further, the optically imaging element is arranged as a single lens system.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: October 6, 2020
    Assignee: Carl Zeiss Meditec AG
    Inventors: Mario Gerlach, Werner Fiala
  • Publication number: 20200129329
    Abstract: A device for machining an object by laser radiation, by photodisruption. The device includes an observation device for imaging the object and a laser scanning device by which the laser radiation is passed over a predetermined sector of the object for scanning the sector. The device includes the observation device with a first lens for imaging the object; the laser scanning device with a second lens, through which the laser radiation is guided, in which both lenses with regard to the dimension of the regions to be produced in the images and/or with regard to their focal intercept are different from each other. The device alternately images the respective region of the object in a first operating mode by the first lens and in a second operating mode by the second lens. It is thus possible to use in both operating modes a lens adapted to the intended imaging purpose.
    Type: Application
    Filed: December 26, 2019
    Publication date: April 30, 2020
    Inventors: Marco HANFT, Dirk MUEHLHOFF, Mario GERLACH, Elke EBERT
  • Publication number: 20200113734
    Abstract: A scanning device for focusing a beam of rays in defined regions of a defined volume, comprising an input optics wherein the beam of rays penetrates first, having at least one first optical element; a focusing optics for focusing the beam of rays exiting from the input optics; and a deflecting device arranged between the first optical element and the focusing optics, for deflecting the beam of rays after it has passed through the first optical element, based on a position of the focus to be adjusted in lateral direction. In order to adjust the position of the focus of the beam of rays in the direction of the beam of rays, and optical element of the input optics can be displaced relative to the deflecting device.
    Type: Application
    Filed: December 2, 2019
    Publication date: April 16, 2020
    Inventors: Marco Hanft, Dirk Muehlhoff, Mark Bischoff, Mario Gerlach
  • Publication number: 20200085569
    Abstract: An artificial eye lens (1) having an optical part (2) which has a first optical side (4) and an opposite, second optical side (5). The optical part (2) has a diffractive grating structure that contributes to an optical imaging property of the optical part (2). The diffractive grating structure is an amplitude grating (6) formed in the optical part (2) as a laser structure. A method for producing an artificial eye lens (1) where the amplitude grating (6) is produced with a laser apparatus (17), and a pulsed laser beam (22) having a pulse length of between 100 fs and 20 ps, a wavelength of between 320 nm and 1100 nm, a pulse repetition rate of between 1 kHz and 10 MHz, a focus diameter of less than 5 ?m, and a power density of greater than 106 W/cm2.
    Type: Application
    Filed: May 17, 2018
    Publication date: March 19, 2020
    Inventors: Michael KASCHKE, Manfred DICK, Mario GERLACH
  • Patent number: 10531985
    Abstract: A device for machining an object by laser radiation, by photodisruption. The device includes an observation device for imaging the object and a laser scanning device by which the laser radiation is passed over a predetermined sector of the object for scanning the sector. The device includes the observation device with a first lens for imaging the object; the laser scanning device with a second lens, through which the laser radiation is guided, in which both lenses with regard to the dimension of the regions to be produced in the images and/or with regard to their focal intercept are different from each other. The device alternately images the respective region of the object in a first operating mode by the first lens and in a second operating mode by the second lens. It is thus possible to use in both operating modes a lens adapted to the intended imaging purpose.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: January 14, 2020
    Assignee: Carl Zeiss Meditec AG
    Inventors: Marco Hanft, Dirk Muehlhoff, Mario Gerlach, Elke Ebert