Patents by Inventor Mario Gerlach

Mario Gerlach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10517762
    Abstract: A scanning device for focusing a beam of rays in defined regions of a defined volume, comprising an input optics wherein the beam of rays penetrates first, having at least one first optical element; a focusing optics for focusing the beam of rays exiting from the input optics; and a deflecting device arranged between the first optical element and the focusing optics, for deflecting the beam of rays after it has passed through the first optical element, based on a position of the focus to be adjusted in lateral direction. In order to adjust the position of the focus of the beam of rays in the direction of the beam of rays, and optical element of the input optics can be displaced relative to the deflecting device.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: December 31, 2019
    Assignee: Carl Zeiss Meditec AG
    Inventors: Marco Hanft, Dirk Muehlhoff, Mark Bischoff, Mario Gerlach
  • Publication number: 20190247226
    Abstract: The invention relates to a method for forming curved cuts in a transparent material, in particular in the cornea, by the creation of optical perforations in said material using laser radiation that is focused in the material. The focal point is displaced three-dimensionally to form the cut by lining up the optical perforations. The focal point is displaced in a first spatial direction by a displaceable lens and said focal directions, in such a way that it follows the contours of the cut, which lie on a plane that is substantially perpendicular to the first spatial direction.
    Type: Application
    Filed: February 13, 2019
    Publication date: August 15, 2019
    Inventors: Dirk Muehlhoff, Mario Gerlach, Markus Sticker, Carsten Lang, Mark Bischoff, Michael Bergt
  • Patent number: 10278809
    Abstract: A multifocal eye lenses including an optical part, which has a first optical side and an opposite second optical side viewed in the direction of a main optical axis (A) of the eye lens, and which has a plurality of annular optical zones that at least partly encircle the main optical axis (A) and are formed on at least one side, and zones each have at least one main sub-zone.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: May 7, 2019
    Assignee: Carl Zeiss Meditec AG
    Inventor: Mario Gerlach
  • Patent number: 10213339
    Abstract: The invention relates to a method for forming curved cuts in a transparent material, in particular in the cornea, by the creation of optical perforations in said material using laser radiation that is focused in the material. The focal point is displaced three-dimensionally to form the cut by lining up the optical perforations. The focal point is displaced in a first spatial direction by a displaceable lens and said focal directions in such a way that it follows the contours of the cut, which lie on a plane that is substantially perpendicular to the first spatial direction.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: February 26, 2019
    Assignee: Carl Zeiss Meditec AG
    Inventors: Dirk Muehlhoff, Mario Gerlach, Markus Sticker, Carsten Lang, Mark Bischoff, Michael Bergt
  • Publication number: 20190029883
    Abstract: A scanning device for focusing a beam of rays in defined regions of a defined volume, comprising an input optics wherein the beam of rays penetrates first, having at least one first optical element; a focusing optics for focusing the beam of rays exiting from the input optics; and a deflecting device arranged between the first optical element and the focusing optics, for deflecting the beam of rays after it has passed through the first optical element, based on a position of the focus to be adjusted in lateral direction. In order to adjust the position of the focus of the beam of rays in the direction of the beam of rays, and optical element of the input optics can be displaced relative to the deflecting device.
    Type: Application
    Filed: October 1, 2018
    Publication date: January 31, 2019
    Inventors: Marco Hanft, Dirk Muehlhoff, Mark Bischoff, Mario Gerlach
  • Patent number: 10098726
    Abstract: An eye lens includes an optical part, which defines a first optical surface. The first optical surface is configured as turn with a pitch extending circumferentially about a principal axis (A) of the eye lens. A transition region is formed between a beginning and an end of the turn, which with a beginning edge and an end edge merges into the turn. The beginning edge extends between the principal axis (A) and a first circumferential location and the end edge extends between the principal axis (A) and a second circumferential location. The beginning edge projected into a plane (H) perpendicular to the principal axis (A) has a non-linear course and/or the end edge projected into a plane (H) perpendicular to the principal axis (A) has a non-linear course.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: October 16, 2018
    Assignee: Carl Zeiss Meditec AG
    Inventors: Mario Gerlach, Beate Boehme, Hans-Juergen Dobschal
  • Patent number: 10092448
    Abstract: A scanning device for focusing a beam of rays in defined regions of a defined volume, comprising an input optics wherein the beam of rays penetrates first, having at least one first optical element; a focusing optics for focusing the beam of rays exiting from the input optics; and a deflecting device arranged between the first optical element and the focusing optics, for deflecting the beam of rays after it has passed through the first optical element, based on a position of the focus to be adjusted in lateral direction. In order to adjust the position of the focus of the beam of rays in the direction of the beam of rays, and optical element of the input optics can be displaced relative to the deflecting device.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: October 9, 2018
    Assignee: Carl Zeiss Meditec AG
    Inventors: Marco Hanft, Dirk Muehlhoff, Mark Bischoff, Mario Gerlach
  • Publication number: 20180110655
    Abstract: A method for precise working of material, particularly organic tissue, comprises the step of providing laser pulses with a pulse length between 50 fs and 1 ps and with a pulse frequency from 50 kHz to 1 MHz and with a wavelength between 600 and 2000 nm for acting on the material to be worked. Apparatus, in accordance with the invention, for precise working of material, particularly organic tissue comprising a pulsed laser, wherein the laser has a pulse length between 50 fs and 1 ps and with a pulse frequency of from 50 kHz to 1 MHz is also described.
    Type: Application
    Filed: December 15, 2017
    Publication date: April 26, 2018
    Applicant: CARL ZEISS MEDITEC AG
    Inventors: Mark Bendett, Mark Bischoff, Mario Gerlach, Dirk Mühlhoff
  • Patent number: 9925041
    Abstract: An eye lens including an optical part, which has a first optical side and an opposite second optical side with respect to a direction of an optical principal axis (A) of the eye lens, wherein a toric refractive surface profile is formed on at least one of the two sides, wherein the eye lens has a surface structure that is stepped in a radial direction of the optical part in addition to the toric refractive surface profile, and the stepped surface structure is formed on at least one side.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: March 27, 2018
    Assignee: Carl Zeiss Meditec AG
    Inventor: Mario Gerlach
  • Publication number: 20170367878
    Abstract: The invention relates to a device for measuring an optical penetration that is triggered in a tissue underneath the tissue surface by means of therapeutic laser radiation which a laser-surgical device concentrates in a treatment focus located in said tissue. The inventive device is provided with a detection beam path comprising a lens system which couples radiation emanating from the tissue underneath the tissue surface into the detection beam path. A detector device generating a detection signal which indicates the spatial dimension and/or position of the optical penetration in the tissue is arranged downstream of the detection beam path.
    Type: Application
    Filed: July 22, 2014
    Publication date: December 28, 2017
    Inventors: Michael KEMPE, Markus STREHLE, Dirk MUEHLHOFF, Mario GERLACH, Markus STICKER, Mark BISCHOFF, Manfred DICK, Michael BERGT
  • Patent number: 9844464
    Abstract: A method for precise working of material, particularly organic tissue, comprises the step of providing laser pulses with a pulse length between 50 fs and 1 ps and with a pulse frequency from 50 kHz to 1 MHz and with a wavelength between 600 and 2000 nm for acting on the material to be worked. Apparatus, in accordance with the invention, for precise working of material, particularly organic tissue comprising a pulsed laser, wherein the laser has a pulse length between 50 fs and 1 ps and with a pulse frequency of from 50 kHz to 1 MHz is also described.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: December 19, 2017
    Assignee: Carl Zeiss Meditec AG
    Inventors: Mark Bendett, Mark Bischoff, Mario Gerlach, Dirk Mühlhoff
  • Publication number: 20170281335
    Abstract: An intraocular lens is provided. The intraocular lens includes an optical part and an adjoining haptic part. The optical part includes an optically imaging element and a telescope, the entire telescope being integrally formed and being integrated in the optical imaging element. The optically imaging element has a convexly-curved front side and a concavely-curved rear side. Further, the optically imaging element is arranged as a single lens system.
    Type: Application
    Filed: June 16, 2017
    Publication date: October 5, 2017
    Inventors: Mario Gerlach, Werner Fiala
  • Publication number: 20170188826
    Abstract: An apparatus has an image capture sensor which captures a reference image of a retro-illuminated unstained capsule of an eye. After the ocular structure has been stained with a dye for an ophthalmic surgical procedure a second image is captured as a measurement image via the image capture sensor. An evaluation module compares the reference image and the measurement image taken after the staining of the ocular structure. The evaluation module from the comparison of the reference and measurement images then determines the local light attenuation by the introduced dye. The staining of the eye can also be determined by only imaging a stained ocular structure of an eye and evaluating the images on the basis of predetermined acceptance values.
    Type: Application
    Filed: December 31, 2015
    Publication date: July 6, 2017
    Inventor: Mario Gerlach
  • Publication number: 20170056244
    Abstract: A device for machining an object by laser radiation, by photodisruption. The device includes an observation device for imaging the object and a laser scanning device by which the laser radiation is passed over a predetermined sector of the object for scanning the sector. The device includes the observation device with a first lens for imaging the object; the laser scanning device with a second lens, through which the laser radiation is guided, in which both lenses with regard to the dimension of the regions to be produced in the images and/or with regard to their focal intercept are different from each other. The device alternately images the respective region of the object in a first operating mode by the first lens and in a second operating mode by the second lens. It is thus possible to use in both operating modes a lens adapted to the intended imaging purpose.
    Type: Application
    Filed: November 11, 2016
    Publication date: March 2, 2017
    Inventors: Marco HANFT, Dirk MUEHLHOFF, Mario GERLACH, Elke EBERT
  • Publication number: 20170020733
    Abstract: A method for precise working of material, particularly organic tissue, comprises the step of providing laser pulses with a pulse length between 50 fs and 1 ps and with a pulse frequency from 50 kHz to 1 MHz and with a wavelength between 600 and 2000 nm for acting on the material to be worked. Apparatus, in accordance with the invention, for precise working of material, particularly organic tissue comprising a pulsed laser, wherein the laser has a pulse length between 50 fs and 1 ps and with a pulse frequency of from 50 kHz to 1 MHz is also described.
    Type: Application
    Filed: April 18, 2016
    Publication date: January 26, 2017
    Applicant: CARL ZEISS MEDITEC AG
    Inventors: Mark BENDETT, Mark Bischoff, Mario Gerlach, Dirk Mühlhoff
  • Patent number: 9517126
    Abstract: The invention relates to an ophthalmologic implant, in particular an intraocular lens. The implant includes at least one marker produced with at least one dye which is a fluorescent dye having a maximum emission outside of the light spectrum visible to humans or an absorbing dye having a maximum absorption outside the light spectrum visible to humans. The said fluorescent or absorbing dye does not substantially influence light transmission of the ophthalmologic implant within the visual spectral range. The invention further relates to a microscopy system and an optical detection process for detecting and/or identifying the disclosed ophthalmologic implant.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: December 13, 2016
    Assignee: Carl Zeiss Meditec AG
    Inventors: Martin Wiechmann, Mario Gerlach
  • Patent number: 9498844
    Abstract: The invention relates to a device for machining an object by laser radiation, in particular by using the photodisruption method. Said device comprises an observation device for imaging the object and a laser scanning device by which the laser radiation is passed over a predetermined sector of the object for scanning said sector. According to the invention, such a device includes the observation device with a first lens for imaging the object; the laser scanning device with a second lens, through which the laser radiation is guided, in which both lenses with regard to the dimension of the regions to be produced in the images and/or with regard to their focal intercept are different from each other. This invention alternately images the respective region of the object in a first operating mode by the first lens and in a second operating mode by the second lens. It is thus possible to use in both operating modes a lens adapted to the intended imaging purpose.
    Type: Grant
    Filed: July 12, 2005
    Date of Patent: November 22, 2016
    Assignee: Carl Zeiss Meditec AG
    Inventors: Marco Hanft, Dirk Muehlhoff, Mario Gerlach, Elke Ebert
  • Publication number: 20160278981
    Abstract: The invention relates to a device for measuring an optical penetration that is triggered in a tissue underneath the tissue surface by means of therapeutic laser radiation which a laser-surgical device concentrates in a treatment focus located in said tissue. The inventive device is provided with a detection beam path comprising a lens system which couples radiation emanating from the tissue underneath the tissue surface into the detection beam path. A detector device generating a detection signal which indicates the spatial dimension and/or position of the optical penetration in the tissue is arranged downstream of the detection beam path.
    Type: Application
    Filed: April 1, 2016
    Publication date: September 29, 2016
    Inventors: Michael KEMPE, Markus STREHLE, Dirk MUEHLHOFF, Mario GERLACH, Markus STICKER, Mark BISCHOFF, Manfred DICK, Michael BERGT
  • Publication number: 20160278980
    Abstract: The invention relates to a device for measuring an optical penetration that is triggered in a tissue underneath the tissue surface by means of therapeutic laser radiation which a laser-surgical device concentrates in a treatment focus located in said tissue. The inventive device is provided with a detection beam path comprising a lens system which couples radiation emanating from the tissue underneath the tissue surface into the detection beam path. A detector device generating a detection signal which indicates the spatial dimension and/or position of the optical penetration in the tissue is arranged downstream of the detection beam path.
    Type: Application
    Filed: April 1, 2016
    Publication date: September 29, 2016
    Inventors: Michael KEMPE, Markus STREHLE, Dirk MUEHLHOFF, Mario GERLACH, Markus STICKER, Mark BISCHOFF, Manfred DICK, Michael BERGT
  • Publication number: 20160220350
    Abstract: A multifocal eye lenses including an optical part, which has a first optical side and an opposite second optical side viewed in the direction of a main optical axis (A) of the eye lens, and which has a plurality of annular optical zones that at least partly encircle the main optical axis (A) and are formed on at least one side, and zones each have at least one main sub-zone.
    Type: Application
    Filed: February 16, 2016
    Publication date: August 4, 2016
    Inventor: Mario Gerlach