Patents by Inventor Mark A. Davison

Mark A. Davison has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10842524
    Abstract: Various surgical devices are provided having mechanisms for preventing premature actuation of a cutting mechanism. These devices generally include a handle having one or more actuators and an effector disposed at a distal end of the device and configured to grasp tissue. When the end effector is in an open position, a firing actuator can be positioned so that it cannot be actuated by a user. For example, the firing actuator can be obstructed by a shield or arm when the end effector is in the open position. In other embodiments, the firing actuator can be hidden in a recess formed in the closure actuator until the end effector is moved to the closed position. When the end effector is in the closed position, the firing actuator can be engaged to advance a cutting mechanism, thereby cutting the tissue grasped by the end effector.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: November 24, 2020
    Assignee: Ethicon LLC
    Inventors: Geoffrey S. Strobl, Mark A. Davison, Megan A. Broderick, Chad P. Boudreaux
  • Publication number: 20200315686
    Abstract: An apparatus includes a body, a shaft assembly, and an end effector. The end effector includes an ultrasonic blade and a clamp arm assembly. The ultrasonic blade is in acoustic communication with an acoustic waveguide of the shaft assembly. The clamp arm assembly is pivotable toward and away from the ultrasonic blade. The clamp arm assembly includes a first electrode and a second electrode. The first and second electrodes are operable to cooperate to apply bipolar RF energy to tissue.
    Type: Application
    Filed: March 31, 2020
    Publication date: October 8, 2020
    Inventors: Jason R. Lesko, Catherine A. Corbett, William B. Weisenburgh, II, Barry C. Worrell, Mark A. Davison, Chad P. Boudreaux, Nathan Cummings, Ellen Burkart, William D. Dannaher, Christina M. Hough, Craig N. Faller, Adam N. Brown, Jeffrey D. Messerly, Kai Chen, William E. Clem
  • Publication number: 20200188046
    Abstract: A method includes advancing an end effector of a surgical tool to a surgical site, setting a desired force vector to be assumed on the end effector during actuation of the end effector, engaging tissue at the surgical site with the end effector and calculating a force vector assumed on the end effector, and maneuvering the end effector to obtain the desired force vector.
    Type: Application
    Filed: December 13, 2018
    Publication date: June 18, 2020
    Applicant: Ethicon LLC
    Inventors: Mark D. Overmyer, Sol A. Posada, Joshua D. Young, Mark A. Davison, Christopher A. Denzinger
  • Publication number: 20200188045
    Abstract: A method includes advancing an end effector of a surgical tool to a surgical site, the surgical tool being pivotably mounted to a robotic arm at a tool driver, engaging tissue at the surgical site with the end effector, calculating a force vector assumed on the end effector by engaging the tissue, optimizing the force vector to obtain an optimized force vector, and actuating the end effector after applying the optimized force vector on the end effector.
    Type: Application
    Filed: December 13, 2018
    Publication date: June 18, 2020
    Applicant: Ethicon LLC
    Inventors: Mark D. Overmyer, Sol A. Posada, Joshua D. Young, Mark A. Davison, Christopher A. Denzinger
  • Patent number: 10667824
    Abstract: A surgical clip applier and methods for applying surgical clips to a vessel, duct, shunt, etc., during a surgical procedure are provided. In one exemplary embodiment, a surgical clip applier is provided having a housing with a trigger movably coupled thereto and an elongate shaft extending therefrom with opposed jaws formed on a distal end thereof. The trigger is adapted to advance a clip to position the clip between the jaws, and to move the jaws from an open position to a closed position to crimp the clip positioned therebetween.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: June 2, 2020
    Assignee: Ethicon LLC
    Inventors: Dario Vitali, Nicholas G. Molitor, Thomas W. Huitema, Robert L. Koch, Brian D. Bertke, Kevin A. Larson, Richard P. Fuchs, Mark A. Davison
  • Patent number: 10660692
    Abstract: An apparatus includes a body, a shaft assembly, and an end effector. The end effector includes an ultrasonic blade and a clamp arm assembly. The ultrasonic blade is in acoustic communication with an acoustic waveguide of the shaft assembly. The clamp arm assembly is pivotable toward and away from the ultrasonic blade. The clamp arm assembly includes a first electrode and a second electrode. The first and second electrodes are operable to cooperate to apply bipolar RF energy to tissue.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: May 26, 2020
    Assignee: Ethicon LLC
    Inventors: Jason R. Lesko, Catherine A. Corbett, William B. Weisenburgh, II, Barry C. Worrell, Mark A. Davison, Nathan Cummings, Ellen Burkart, William D. Dannaher, Christina M. Hough, Craig N. Faller, Adam Brown, Jeffrey D. Messerly, Kai Chen, William E. Clem
  • Publication number: 20200138507
    Abstract: An end effector includes a first jaw rotatably coupled to a second jaw at a jaw axle, a central pulley rotatably mounted to the jaw axle, and a pivot link rotatably coupled to the first jaw at a pivot axle. A jaw cable is looped around the central pulley and operatively coupled to the pivot link such that linear movement of the jaw cable correspondingly causes the first jaw to rotate relative to the second jaw on the jaw axle and between open and closed positions.
    Type: Application
    Filed: November 2, 2018
    Publication date: May 7, 2020
    Applicant: Ethicon LLC
    Inventors: Mark A. Davison, Benjamin D. Dickerson, Christopher W. Birri
  • Publication number: 20200138508
    Abstract: An articulable wrist for an end effector includes a distal linkage provided at a distal end of the articulable wrist, a proximal linkage provided at a proximal end of the articulable wrist, and a central channel cooperatively defined by the distal and proximal linkages and extending between the distal and proximal ends. A flexible member is arranged within the central channel and has a first end operatively coupled to the distal linkage and a second end axially movable relative to the proximal linkage. One or more conduits are defined in the flexible member to receive one or more central actuation members extending through the flexible member.
    Type: Application
    Filed: November 5, 2018
    Publication date: May 7, 2020
    Applicant: Ethicon LLC
    Inventors: Mark A. Davison, Christopher W. Birri, William George Saulenas, Jalen Lee Wize
  • Publication number: 20200113624
    Abstract: The disclosure provides a method of manufacturing a flexible circuit electrode assembly and an apparatus manufactured by said method. According to the method, an electrically conductive sheet is laminated to an electrically insulative sheet. An electrode is formed on the electrically conductive sheet. An electrically insulative layer is formed on a tissue contacting surface of the electrode. The individual electrodes are separated from the laminated electrically insulative sheet and the electrically conductive sheet. In another method, a flexible circuit is vacuum formed to create a desired profile. The vacuum formed flexible circuit is trimmed. The trimmed vacuum formed flexible circuit is attached to a jaw member of a clamp jaw assembly.
    Type: Application
    Filed: December 16, 2019
    Publication date: April 16, 2020
    Inventors: Barry C. Worrell, David C. Yates, Joseph D. Dennis, Mark A. Davison, Geoffrey S. Strobl
  • Publication number: 20200054382
    Abstract: Various embodiments are directed to electrosurgical systems for providing an electrosurgical signal to a patient. A control circuit may, for a first application period, apply the electrosurgical signal to first and second electrodes according to a first mode. In the first mode, the control circuit may limit the electrosurgical signal to a first maximum power when the impedance between the first and second electrodes exceeds a first mode threshold. The control circuit may also, for a second application period after the first application period, apply the electrosurgical signal according to a second mode. In the second mode, the control circuit may limit the electrosurgical signal to a second mode maximum power when the impedance between the first and second electrodes exceeds a second mode threshold. The second maximum power may be greater than the first maximum power.
    Type: Application
    Filed: July 8, 2019
    Publication date: February 20, 2020
    Inventors: David C. Yates, Jeffrey D. Messerly, Mark A. Davison
  • Patent number: 10555769
    Abstract: The disclosure provides a method of manufacturing a flexible circuit electrode assembly and an apparatus manufactured by said method. According to the method, an electrically conductive sheet is laminated to an electrically insulative sheet. An electrode is formed on the electrically conductive sheet. An electrically insulative layer is formed on a tissue contacting surface of the electrode. The individual electrodes are separated from the laminated electrically insulative sheet and the electrically conductive sheet. In another method, a flexible circuit is vacuum formed to create a desired profile. The vacuum formed flexible circuit is trimmed. The trimmed vacuum formed flexible circuit is attached to a jaw member of a clamp jaw assembly.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: February 11, 2020
    Assignee: Ethicon LLC
    Inventors: Barry C. Worrell, David C. Yates, Joseph D. Dennis, Mark A. Davison, Geoffrey S. Strobl
  • Patent number: 10556497
    Abstract: A hybrid powertrain includes a traction battery and a controller. The controller is programmed to, responsive to a current vehicle speed exceeding a first threshold, reduce a parameter indicative of state of charge (SOC) of the battery by an offset amount that varies with an amount of predicted distance for which a predicted vehicle speed profile is less than a second threshold to prompt charging of the battery to increased SOC values.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: February 11, 2020
    Assignee: Ford Global Technologies, LLC
    Inventors: Chen Zhang, Yanan Zhao, Mark Steven Yamazaki, Ming Lang Kuang, Mark Davison
  • Patent number: 10549745
    Abstract: A hybrid electric vehicle having a powertrain including an engine and an electric machine, and controllers configured to derate powertrain output torque below a nominal maximum to a fault-torque limit, in response to a vehicle fault or issue. The vehicle and controllers are also configured to transiently increase powertrain torque output above the fault-torque limit in response to a torque demand that exceeds the limit, and which is needed to enable a predicted vehicle maneuver. The controller also establishes a predicted duration for the predicted interim vehicle maneuver and for override of the fault-torque limit and delivery of the additional torque from the torque-demand signal and other signals. The predicted duration includes a time span to maneuver through roadway obstacles and traffic, but does not exceed a limited operation time or a limited power output established by the controller from the vehicle issue or fault identified by the fault signal.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: February 4, 2020
    Assignee: Ford Global Technologies, LLC
    Inventors: Chen Zhang, Mark Steven Yamazaki, Mark Davison
  • Publication number: 20200030021
    Abstract: Aspects of the present disclosure are presented for a medical instrument configured to adjust the power level for sealing procedures to account for changes in tissue impedance levels over time. In some aspects, a medical instrument may be configured to apply power according to a power algorithm to seal tissue by applying a gradually lower amount of power over to time as the tissue impedance level begins to rise out of the “bathtub region,” which is the time period during energy application where the tissue impedance is low enough for electrosurgical energy to be effective for sealing tissue. In some aspects, the power is then cut once the tissue impedance level exceeds the “bathtub region.” By gradually reducing the power, a balance is achieved between still applying an effective level of power for sealing and prolonging the time in which the tissue impedance remains in the “bathtub region.
    Type: Application
    Filed: August 5, 2019
    Publication date: January 30, 2020
    Inventors: David C. Yates, Amy M. Krumm, Mark A. Davison
  • Publication number: 20190389261
    Abstract: A vehicle system comprises a hitch ball mounted on a vehicle and a controller configured to identify a coupler position of a trailer. The controller is further configured to control motion of the vehicle aligning the hitch ball with the coupler position and monitor a height of the coupler relative to the hitch ball. In response to the coupler height being less than a height of the hitch ball, the controller is configured to stop the motion of the vehicle.
    Type: Application
    Filed: June 26, 2018
    Publication date: December 26, 2019
    Applicant: Ford Global Technologies, LLC
    Inventors: Chen Zhang, Mark Davison, Yu Ling
  • Patent number: 10441345
    Abstract: A generator is disclosed to generate a drive signal to a surgical device. The generator includes an ultrasonic generator module to generate a first drive signal to drive an ultrasonic device, an electrosurgery/radio frequency (RF) generator module to generate a second drive signal to drive an electrosurgical device, and a foot switch coupled to each of the ultrasonic generator module and the electrosurgery/RF generator module. The foot switch is configured to operate in a first mode when the ultrasonic device is coupled to the ultrasonic generator module and the foot switch is configured to operate in a second mode when the electrosurgical device is coupled to the electrosurgery/RF generator module. The generator further includes a user interface to provide feedback in accordance with the operation of any one of the ultrasonic device and the electrosurgical device in accordance with a predetermined algorithm.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: October 15, 2019
    Assignee: Ethicon LLC
    Inventors: Jeffrey L. Aldridge, Robert A. Kemerling, Mark E. Tebbe, Christopher A. Papa, Daniel W. Price, Eitan T. Wiener, Jeffrey D. Messerly, David C. Yates, Mark A. Davison, Scott B. Killinger, Gavin M. Monson, Robert J. Laird, Matthew C. Miller
  • Patent number: 10427656
    Abstract: A computer is programmed to determine a target brake torque that is below a preset holding brake torque and at least high enough to hold a vehicle at standstill; and upon detecting that a brake of the vehicle is applied and a speed of the vehicle is below a threshold, monotonically reduce a brake torque of the brake so that the brake torque reaches the target brake torque when the speed reaches substantially zero.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: October 1, 2019
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Chen Zhang, Li Xu, Yanan Zhao, George Edmund Walley, III, Mark Davison
  • Patent number: 10376305
    Abstract: Aspects of the present disclosure are presented for a medical instrument configured to adjust the power level for sealing procedures to account for changes in tissue impedance levels over time. In some aspects, a medical instrument may be configured to apply power according to a power algorithm to seal tissue by applying a gradually lower amount of power over time as the tissue impedance level begins to rise out of the “bathtub region,” which is the time period during energy application where the tissue impedance is low enough for electrosurgical energy to be effective for sealing tissue. In some aspects, the power is then cut once the tissue impedance level exceeds the “bathtub region.” By gradually reducing the power, a balance is achieved between still applying an effective level of power for sealing and prolonging the time in which the tissue impedance remains in the “bathtub region.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: August 13, 2019
    Assignee: Ethicon LLC
    Inventors: David C. Yates, Amy M. Krumm, Mark A. Davison
  • Patent number: 10349999
    Abstract: Various embodiments are directed to methods for providing an electrosurgical signal to a patient using an electrosurgical system. A method may, for a first application period, apply the electrosurgical signal to first and second electrodes according to a first mode. In the first mode, the electrosurgical signal is limited to a first maximum power when the impedance between the first and second electrodes exceeds a first mode threshold. The method may also, for a second application period after the first application period, apply the electrosurgical signal according to a second mode. In the second mode, the electrosurgical signal is limited to a second mode maximum power when the impedance between the first and second electrodes exceeds a second mode threshold. The second maximum power may be greater than the first maximum power.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: July 16, 2019
    Assignee: Ethicon LLC
    Inventors: David C. Yates, Jeffrey D. Messerly, Mark A. Davison
  • Patent number: D893717
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: August 18, 2020
    Assignee: Ethicon LLC
    Inventors: Jeffrey D. Messerly, David C. Yates, Jason L. Harris, Frederick E. Shelton, IV, Mark A. Davison