Patents by Inventor Mark A. Davison
Mark A. Davison has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20180280076Abstract: Methods and devices for controlling motorized surgical devices are provided. In general, the methods and devices can allow a surgical device to grasp and cut tissue. In some embodiments, the device can include at least one sensor and a motor, and an output of the motor can be configured to be adjusted based at least in part on an output from the at least one sensor. The output of the motor can be configured to provide power for translation of a cutting element along an end effector of the device. Adjusting the motor's output can cause the cutting element to translate through the end effector at different speeds, thereby allowing the cutting element to cut through tissue being grasped by the end effector at different speeds.Type: ApplicationFiled: April 27, 2018Publication date: October 4, 2018Inventors: Gregory A. Trees, Chad P. Boudreaux, Matthew C. Miller, Mark A. Davison, David C. Yates, John A. Hibner, Jill A. Inkrott-Smith
-
Publication number: 20180235691Abstract: A surgical system includes a module for compiling a plurality of operational parameters of the surgical system during a plurality of treatment cycles performed by the surgical system. The module includes a processor and a memory unit, the processor configured to store in the memory unit values of the plurality of operational parameters associated with each of the plurality of treatment cycles, wherein the processor is configured to identify a subset of the stored values of the plurality of operational parameters temporally proximate to an intervening event.Type: ApplicationFiled: March 8, 2018Publication date: August 23, 2018Inventors: Aaron C. Voegele, Phillip H. Clauda, Kevin L. Houser, Robert A. Kemerling, Mark A. Davison, Foster B. Stulen, Gregory A. Trees
-
Patent number: 9980769Abstract: Methods and devices for controlling motorized surgical devices are provided. In general, the methods and devices can allow a surgical device to grasp and cut tissue. In some embodiments, the device can include at least one sensor and a motor, and an output of the motor can be configured to be adjusted based at least in part on an output from the at least one sensor. The output of the motor can be configured to provide power for translation of a cutting element along an end effector of the device. Adjusting the motor's output can cause the cutting element to translate through the end effector at different speeds, thereby allowing the cutting element to cut through tissue being grasped by the end effector at different speeds.Type: GrantFiled: April 8, 2014Date of Patent: May 29, 2018Assignee: Ethicon LLCInventors: Gregory A. Trees, Chad P. Boudreaux, Matthew C. Miller, Mark A. Davison, David C. Yates, John A. Hibner, Jill A. Inkrott-Smith
-
Patent number: 9918730Abstract: Methods and devices for controlling motorized surgical devices are provided. In general, the methods and devices can allow a surgical device to grasp and cut tissue. In some embodiments, the device can include at least one sensor and a motor, and an output of the motor can be configured to be adjusted based at least in part on an output from the at least one sensor. The output of the motor can be configured to provide power for translation of a cutting element along an end effector of the device. Adjusting the motor's output can cause the cutting element to translate through the end effector at different speeds, thereby allowing the cutting element to cut through tissue being grasped by the end effector at different speeds.Type: GrantFiled: April 8, 2014Date of Patent: March 20, 2018Assignee: Ethicon LLCInventors: Gregory A. Trees, Chad P. Boudreaux, Matthew C. Miller, Mark A. Davison, David C. Yates, John A. Hibner
-
Publication number: 20180036061Abstract: Various embodiments are directed to electrosurgical systems for providing an electrosurgical signal to a patient. A control circuit may, for a first application period, apply the electrosurgical signal to first and second electrodes according to a first mode. In the first mode, the control circuit may limit the electrosurgical signal to a first maximum power when the impedance between the first and second electrodes exceeds a first mode threshold. The control circuit may also, for a second application period after the first application period, apply the electrosurgical signal according to a second mode. In the second mode, the control circuit may limit the electrosurgical signal to a second mode maximum power when the impedance between the first and second electrodes exceeds a second mode threshold. The second maximum power may be greater than the first maximum power.Type: ApplicationFiled: August 2, 2017Publication date: February 8, 2018Inventors: David C. Yates, Jeffrey D. Messerly, Mark A. Davison
-
Publication number: 20180036065Abstract: Aspects of the present disclosure are presented for a medical instrument configured to adjust the power level for sealing procedures to account for changes in tissue impedance levels over time. In some aspects, a medical instrument may be configured to apply power according to a power algorithm to seal tissue by applying a gradually lower amount of power over to time as the tissue impedance level begins to rise out of the “bathtub region,” which is the time period during energy application where the tissue impedance is low enough for electrosurgical energy to be effective for sealing tissue. In some aspects, the power is then cut once the tissue impedance level exceeds the “bathtub region.” By gradually reducing the power, a balance is achieved between still applying an effective level of power for sealing and prolonging the time in which the tissue impedance remains in the “bathtub region.Type: ApplicationFiled: August 5, 2016Publication date: February 8, 2018Inventors: David C. Yates, Amy M. Krumm, Mark A. Davison
-
Publication number: 20170319213Abstract: A surgical clip applier and methods for applying surgical clips to a vessel, duct, shunt, etc., during a surgical procedure are provided. In one exemplary embodiment, a surgical clip applier is provided having a housing with a trigger movably coupled thereto and an elongate shaft extending therefrom with opposed jaws formed on a distal end thereof. The trigger is adapted to advance a clip to position the clip between the jaws, and to move the jaws from an open position to a closed position to crimp the clip positioned therebetween.Type: ApplicationFiled: July 21, 2017Publication date: November 9, 2017Inventors: Dario Vitali, Nicholas G. Molitor, Thomas W. Huitema, Robert L. Koch, Brian D. Bertke, Kevin A. Larson, Richard P. Fuchs, Mark A. Davison
-
Patent number: 9808307Abstract: Methods and devices for controlling motorized surgical devices are provided. In general, the methods and devices can allow a surgical device to grasp and cut tissue. In some embodiments, the device can include at least one sensor and a motor, and an output of the motor can be configured to be adjusted based at least in part on an output from the at least one sensor. The output of the motor can be configured to provide power for translation of a cutting element along an end effector of the device. Adjusting the motor's output can cause the cutting element to translate through the end effector at different speeds, thereby allowing the cutting element to cut through tissue being grasped by the end effector at different speeds.Type: GrantFiled: April 8, 2014Date of Patent: November 7, 2017Assignee: Ethicon LLCInventors: Gregory A. Trees, Chad P. Boudreaux, Matthew C. Miller, Mark A. Davison, David C. Yates, John A. Hibner, Jill A. Inkrott-Smith
-
Publication number: 20170312018Abstract: An end effector has a first jaw member that includes a first electrode, and second jaw member that includes a second electrode, an electrically conductive member located at the distal end of either the first jaw member or the second jaw member, and an electrically insulative member located either on the first jaw member or the second jaw member. The electrically conductive member is configured to define a distance between the first and second electrodes along the length of the first and second electrodes, the electrically conductive member having a first stiffness. The electrically insulative member is located either on the first jaw member or the second jaw member and is sized and configured to engage tissue. The electrically conductive member has a first stiffness and the electrically insulative member has a second stiffness. The first stiffness is greater than the first stiffness.Type: ApplicationFiled: April 29, 2016Publication date: November 2, 2017Inventors: Gregory A. Trees, Megan A. Broderick, Paul T. Franer, Robert J. Sanzone, Frederick E. Shelton, IV, Mark A. Davison, David C. Yates
-
Patent number: 9782181Abstract: A surgical clip applier and methods for applying surgical clips to a vessel, duct, shunt, etc., during a surgical procedure are provided. In one exemplary embodiment, a surgical clip applier is provided having a housing with a trigger movably coupled thereto and an elongate shaft extending therefrom with opposed jaws formed on a distal end thereof. The trigger is adapted to advance a clip to position the clip between the jaws, and to move the jaws from an open position to a closed position to crimp the clip positioned therebetween.Type: GrantFiled: May 8, 2014Date of Patent: October 10, 2017Assignee: Ethicon LLCInventors: Dario Vitali, Nicholas G. Molitor, Thomas W. Huitema, Robert L. Koch, Brian D. Bertke, Kevin A. Larson, Robert P. Fuchs, Mark A. Davison
-
Publication number: 20170281211Abstract: Various surgical devices are provided having mechanisms for preventing premature actuation of a cutting mechanism. These devices generally include a handle having one or more actuators and an effector disposed at a distal end of the device and configured to grasp tissue. When the end effector is in an open position, a firing actuator can be positioned so that it cannot be actuated by a user. For example, the firing actuator can be obstructed by a shield or arm when the end effector is in the open position. In other embodiments, the firing actuator can be hidden in a recess formed in the closure actuator until the end effector is moved to the closed position. When the end effector is in the closed position, the firing actuator can be engaged to advance a cutting mechanism, thereby cutting the tissue grasped by the end effector.Type: ApplicationFiled: June 15, 2017Publication date: October 5, 2017Inventors: Geoffrey S. Strobl, Mark A. Davison, Megan A. Broderick, Chad P. Boudreaux
-
Publication number: 20170238991Abstract: The disclosure provides a method of manufacturing a flexible circuit electrode assembly and an apparatus manufactured by said method. According to the method, an electrically conductive sheet is laminated to an electrically insulative sheet. An electrode is formed on the electrically conductive sheet. An electrically insulative layer is formed on a tissue contacting surface of the electrode. The individual electrodes are separated from the laminated electrically insulative sheet and the electrically conductive sheet. In another method, a flexible circuit is vacuum formed to create a desired profile. The vacuum formed flexible circuit is trimmed. The trimmed vacuum formed flexible circuit is attached to a jaw member of a clamp jaw assembly.Type: ApplicationFiled: February 22, 2016Publication date: August 24, 2017Inventors: Barry C. Worrell, David C. Yates, Joseph D. Dennis, Mark A. Davison, Geoffrey S. Strobl
-
Patent number: 9737355Abstract: Various embodiments are directed to electrosurgical systems for providing an electrosurgical signal to a patient. A control circuit may, for a first application period, apply the electrosurgical signal to first and second electrodes according to a first mode. In the first mode, the control circuit may limit the electrosurgical signal to a first maximum power when the impedance between the first and second electrodes exceeds a first mode threshold. The control circuit may also, for a second application period after the first application period, apply the electrosurgical signal according to a second mode. In the second mode, the control circuit may limit the electrosurgical signal to a second mode maximum power when the impedance between the first and second electrodes exceeds a second mode threshold. The second maximum power may be greater than the first maximum power.Type: GrantFiled: March 31, 2014Date of Patent: August 22, 2017Assignee: Ethicon LLCInventors: David C. Yates, Jeffrey D. Messerly, Mark A. Davison
-
Patent number: 9707005Abstract: Various surgical devices are provided having mechanisms for preventing premature actuation of a cutting mechanism. These devices generally include a handle having one or more actuators and an effector disposed at a distal end of the device and configured to grasp tissue. When the end effector is in an open position, a firing actuator can be positioned so that it cannot be actuated by a user. For example, the firing actuator can be obstructed by a shield or arm when the end effector is in the open position. In other embodiments, the firing actuator can be hidden in a recess formed in the closure actuator until the end effector is moved to the closed position. When the end effector is in the closed position, the firing actuator can be engaged to advance a cutting mechanism, thereby cutting the tissue grasped by the end effector.Type: GrantFiled: February 14, 2014Date of Patent: July 18, 2017Assignee: Ethicon LLCInventors: Geoffrey S. Strobl, Mark A. Davison, Megan A. Broderick, Chad P. Boudreaux
-
Patent number: 9707029Abstract: Various surgical devices are provided for shielding tissue from potentially harmful byproducts generated by surgical devices that use energy to treat tissue. In general, a shield member is provided that includes a connector element for removably connecting the shield member to a surgical device and a shield body configured to extend adjacent to an energy-emitting end effector of the device. When energy is delivered to treated tissue captured by the end effector, the shield body can be configured to serve as a physical barrier between the end effector and tissue adjacent to the treated tissue. In this way, the shield member can protect the adjacent tissue from potentially harmful byproducts of the end effector, e.g., heat and steam, and/or can deflect the byproducts back toward the treated tissue.Type: GrantFiled: December 20, 2013Date of Patent: July 18, 2017Assignee: Ethicon LLCInventors: Rudolph H. Nobis, Mark A. Davison
-
Patent number: 9707030Abstract: A surgical instrument for supplying energy to tissue may comprise a handle, a trigger, an electrical input, and a shaft extending from the handle. The surgical instrument may comprise an end effector first and second tissue engaging surfaces that are slanted with respect to a transection plane. The end effector may, for example, have an electrode defining a V-shaped cross sectional profile. The end effector may comprise a plurality of raised surfaces that are received by a plurality of indentions when the end effector is in the closed position. The end effector may comprise a cutting member having a plurality of bands.Type: GrantFiled: June 30, 2014Date of Patent: July 18, 2017Assignee: Ethicon Endo-Surgery, LLCInventors: Mark A. Davison, Chad P. Boudreaux, Jonathan T. Batross, James R. Giordano, Bingshi Wang, David K. Norvell
-
Patent number: 9700333Abstract: Surgical instruments and methods for applying variable compression to tissue are described herein and can have particular utility when cutting and sealing tissue. In one embodiment, a surgical instrument end effector is described that includes first and second jaw members movable relative to one another between an open position and a closed position to clamp tissue therebetween. The end effector can include a compression member configured to translate along the end effector to move the first and second jaw members and apply a variable compression force to the tissue. The variable compression force can have different profiles along the length of the end effector, including, for example, a continuously increasing profile or a profile that alternates between different values. The provided variable compression can reduce the force required to actuate the surgical instrument and increase the quality of a tissue seal formed thereby.Type: GrantFiled: June 30, 2014Date of Patent: July 11, 2017Assignee: Ethicon LLCInventors: Geoffrey S. Strobl, Chad P. Boudreaux, Mark A. Davison
-
Publication number: 20170164973Abstract: An apparatus includes a body, a shaft assembly, and an end effector. The end effector includes an ultrasonic blade and a clamp arm assembly. The ultrasonic blade is in acoustic communication with an acoustic waveguide of the shaft assembly. The clamp arm assembly is pivotable toward and away from the ultrasonic blade. The clamp arm assembly includes a first electrode and a second electrode. The first and second electrodes are operable to cooperate to apply bipolar RF energy to tissue.Type: ApplicationFiled: November 18, 2016Publication date: June 15, 2017Inventors: Jason R. Lesko, Catherine A. Corbett, William B. Weisenburgh, II, Barry C. Worrell, Mark A. Davison, Chad P. Boudreaux, Nathan Cummings, Ellen Gentry, William D. Dannaher, Christina M. Hough, Craig N. Faller, Adam Brown, Jeffrey D. Messerly, Kai Chen, William E. Clem
-
Publication number: 20170164997Abstract: An end effector of an instrument is positioned in a patient. An ultrasonic blade of the end effector is positioned against tissue in the patient. The ultrasonic blade is activated to vibrate ultrasonically while the ultrasonic blade is positioned against tissue. At least one electrode of the end effector is positioned against tissue in the patient. The at least one electrode is activated to apply RF electrosurgical energy to tissue against which the at least one electrode is positioned against tissue.Type: ApplicationFiled: November 18, 2016Publication date: June 15, 2017Inventors: Gregory W. Johnson, Jason R. Lesko, Frederick L. Estera, Amy M. Krumm, Catherine A. Corbett, William B. Weisenburgh, II, Barry C. Worrell, Mark A. Davison, Chad P. Boudreaux, John A. Hibner, Nathan Cummings, Ellen Gentry, William D. Dannaher, Christina M. Hough, Joseph Isosaki, Craig N. Faller, Shan Wan, Adam Brown, Candice Otrembiak, Eitan T. Wiener, Jeffrey D. Messerly, Kai Chen, Matthew C. Miller, William E. Clem
-
Publication number: 20170164972Abstract: An apparatus includes a body, a shaft assembly, and an end effector. The end effector includes an ultrasonic blade and a clamp arm assembly. The ultrasonic blade is in acoustic communication with an acoustic waveguide of the shaft assembly. The clamp arm assembly is pivotable toward and away from the ultrasonic blade. The clamp arm assembly includes a clamp pad and an electrode. The clamp pad is configured to compress tissue against the ultrasonic blade. The clamp pad has a proximal end, a distal end, and a pair of lateral sides extending from the proximal end to the distal end. The electrode is operable to apply RF energy to tissue. The electrode extends along both lateral sides of the clamp pad. The electrode further extends around the distal end of the clamp pad.Type: ApplicationFiled: November 18, 2016Publication date: June 15, 2017Inventors: Gregory W. Johnson, Jason R. Lesko, Frederick L. Estera, Amy M. Krumm, Catherine A. Corbett, William B. Weisenburgh, II, Barry C. Worrell, Mark A. Davison, Chad P. Boudreaux, John A. Hibner, Joseph Isosaki, Shan Wan, Candice Otrembiak, Eitan T. Wiener, Jeffrey D. Messerly, Matthew C. Miller