Patents by Inventor Mark A. Haye

Mark A. Haye has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9476085
    Abstract: The present invention provides for separation of bacterial species and serotypes using electrophoretic methods.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: October 25, 2016
    Assignee: Arizona Board of Regents on Behalf of Arizona State University
    Inventors: Thomas Taylor, Mark Hayes, LaKeta Kemp, Paul Jones
  • Patent number: 9458500
    Abstract: The present invention relates to a novel method for analyzing nucleic acid sequences based on real-time detection of DNA polymerase-catalyzed incorporation of each of the four nucleotide bases, supplied individually and serially in a microfluidic system, to a reaction cell containing a template system comprising a DNA fragment of unknown sequence and an oligonucleotide primer. Incorporation of a nucleotide base into the template system can be detected by any of a variety of methods including but not limited to fluorescence and chemiluminescence detection. Alternatively, microcalorimetic detection of the heat generated by the incorporation of a nucleotide into the extending template system using thermopile, thermistor and refractive index measurements can be used to detect extension reactions.
    Type: Grant
    Filed: June 8, 2013
    Date of Patent: October 4, 2016
    Assignee: Life Technologies Corporation
    Inventors: Peter Williams, Thomas J. Taylor, Daniel J. B. Williams, Ian Gould, Mark A. Hayes
  • Publication number: 20160258709
    Abstract: In some embodiments, a crossbow crank comprises a housing and a shaft rotatable with respect to the housing. A one-way mechanism is arranged to prevent rotation of the shaft in a first rotational direction, but allow rotation in a second direction. A release mechanism is arranged to disengage the one-way mechanism from the shaft. The release mechanism has a first position and a second position, wherein the release mechanism moves along a length of the shaft between the first position and the second position.
    Type: Application
    Filed: May 12, 2016
    Publication date: September 8, 2016
    Applicant: MCP IP, LLC
    Inventors: Mathew A. McPherson, Mark Hayes, Jeffrey A. Ozanne, Tom Koshollek
  • Patent number: 9341434
    Abstract: In some embodiments, a crossbow crank comprises a housing and a shaft rotatable with respect to the housing. A one-way mechanism is arranged to prevent rotation of the shaft in a first rotational direction, but allow rotation in a second direction. A release mechanism is arranged to disengage the one-way mechanism from the shaft. The release mechanism has a first position and a second position, wherein the release mechanism moves along a length of the shaft between the first position and the second position.
    Type: Grant
    Filed: August 8, 2014
    Date of Patent: May 17, 2016
    Assignee: MCP IP, LLC
    Inventors: Mathew A. McPherson, Mark Hayes, Jeffrey A. Ozanne, Tom Koshollek
  • Publication number: 20160024550
    Abstract: The present invention provides for separation of bacterial species and serotypes using electrophoretic methods.
    Type: Application
    Filed: October 2, 2015
    Publication date: January 28, 2016
    Applicant: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Thomas Taylor, Mark Hayes, LaKeta Kemp, Paul Jones
  • Publication number: 20160008776
    Abstract: A mixing system includes a housing having a motor mount rotatably coupled thereto, the motor mount having a passage extending therethrough. A drive shaft is removably positioned within the passage of the motor mount. A cap includes a main body removably coupled to the motor mount and an actuator coupled to the main body so as to be pivotable between a first position and a second position with respect to the main body. The actuator producing a camming action when the actuator is pivoted such that when the actuator is in the first position, the actuator pushes the drive shaft against the motor mount so that the main body is locked to the motor mount and so that rotation of the motor mount causes rotation of the drive shaft and when the actuator is in the second position, the actuator is disengaged from the drive shaft and the cap is removable from the motor mount.
    Type: Application
    Filed: July 14, 2014
    Publication date: January 14, 2016
    Inventors: Mark Hayes, Jeffery Hurd, Steven R. Kjar, Whitt F. Woods
  • Publication number: 20150360237
    Abstract: The present invention provides devices and methods to separate and concentrate target species. In some embodiments, a punctuated continuous microchannel or parallel processing (array-based) separations are provided, the microchannel having a plurality of sequential, constrictive insulating features to form a plurality of reservoirs including a first, second and third reservoir, and a plurality of constricted passageways including a first constricted passageway that connects the first reservoir to the second reservoir and a second constricted passageway that connects the second reservoir to the third reservoir. A voltage is applied to the microchannel to create different electrical fields and/or different dielectrophoresis (DEP) gradients at each of the plurality of constricted passageways in order to separate species that have differing ratios of electrokinetic mobility to dielectrophoretic mobility.
    Type: Application
    Filed: February 3, 2014
    Publication date: December 17, 2015
    Applicant: ARIZONA BORAD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Mark HAYES, Paul JONES, Stacy KENYON, Michael KEEBAUGH, Thomas TAYLOR, Prasun MAHANTI, Sarah STATON, Noah WEISS
  • Patent number: 9185356
    Abstract: The present invention provides for separation of bacterial species and serotypes using electrophoretic methods.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: November 10, 2015
    Assignee: Arizona Board of Regents on Behalf of Arizona State University
    Inventors: Thomas Taylor, Mark Hayes, LaKeta Kemp, Paul Jones
  • Patent number: 9096898
    Abstract: The present invention relates to a novel method for analyzing nucleic acid sequences based on real-time detection of DNA polymerase-catalyzed incorporation of each of the four nucleotide bases, supplied individually and serially in a microfluidic system, to a reaction cell containing a template system comprising a DNA fragment of unknown sequence and an oligonucleotide primer. Incorporation of a nucleotide base into the template system can be detected by any of a variety of methods including but not limited to fluorescence and chemiluminescence detection. Alternatively, microcalorimetic detection of the heat generated by the incorporation of a nucleotide into the extending template system using thermopile, thermistor and refractive index measurements can be used to detect extension reactions.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: August 4, 2015
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Peter Williams, Thomas J. Taylor, Daniel J. B. Williams, Ian Gould, Mark A. Hayes
  • Publication number: 20150056638
    Abstract: The present invention provides devices and methods to separate and concentrate target protein species at a microliter scale and to generate reagents to those variants with exquisite selectivity for specific protein isoforms using only picograms of target material.
    Type: Application
    Filed: March 12, 2013
    Publication date: February 26, 2015
    Inventors: Michael Sierks, Mark Hayes
  • Publication number: 20150040883
    Abstract: In some embodiments, a crossbow crank comprises a housing and a shaft rotatable with respect to the housing. A one-way mechanism is arranged to prevent rotation of the shaft in a first rotational direction, but allow rotation in a second direction. A release mechanism is arranged to disengage the one-way mechanism from the shaft. The release mechanism has a first position and a second position, wherein the release mechanism moves along a length of the shaft between the first position and the second position.
    Type: Application
    Filed: August 8, 2014
    Publication date: February 12, 2015
    Applicant: MCP IP, LLC
    Inventors: Mathew A. McPherson, Mark Hayes, Jeffrey A. Ozanne, Tom Koshollek
  • Publication number: 20140371102
    Abstract: Disclosed are embodiments of methods, apparatus, systems, compositions, and articles of manufacture relating to identifying the source of bioparticles, such as bioparticles shed by an organism. In embodiments, a method may include collecting a sample of bioparticles from the environment, selecting from that sample the bioparticles most informative for identifying their source, and gathering data from those bioparticles to form bioparticle signatures; the bioparticle signatures may be processed into a multi-dimensional vector which may be compared to a multi-dimensional vector derived from a standard using a pattern recognition strategy. In embodiments, an apparatus may include a particle collection device to collect a sample, a transfer device to select bioparticles, and a detector that restricts the movement of the bioparticles; the restricted movement may be used to produce a bioparticle signature.
    Type: Application
    Filed: September 1, 2014
    Publication date: December 18, 2014
    Inventors: Mark A. Hayes, Thomas J. Taylor
  • Patent number: 8821703
    Abstract: The invention relates to a method for identifying the source of shed bioparticles and an apparatus that implements the method. The method involves collecting a sample of bioparticles from the environment, selecting from that sample the bioparticles most effective in identifying their source, and gathering data from those bioparticles to form bioparticle signatures. The bioparticle signatures are then processed into a multi-dimensional vector which is then compared to the multi-dimensional vector derived from a standard using a pattern recognition strategy that identifies the source. The apparatus has a particle collection device to collect the sample, a transfer device that selects information-rich bioparticles and a detector that restricts the movement of the information-rich bioparticles. The restricted movement is then translated into a bioparticle signature.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: September 2, 2014
    Inventors: Mark A. Hayes, Thomas J. Taylor, Karl Booksh, Neal Woodbury, Pierre Herckes
  • Publication number: 20130295560
    Abstract: The present invention relates to a novel method for analyzing nucleic acid sequences based on real-time detection of DNA polymerase-catalyzed incorporation of each of the four nucleotide bases, supplied individually and serially in a microfluidic system, to a reaction cell containing a template system comprising a DNA fragment of unknown sequence and an oligonucleotide primer. Incorporation of a nucleotide base into the template system can be detected by any of a variety of methods including but not limited to fluorescence and chemiluminescence detection. Alternatively, microcalorimetic detection of the heat generated by the incorporation of a nucleotide into the extending template system using thermopile, thermistor and refractive index measurements can be used to detect extension reactions.
    Type: Application
    Filed: June 8, 2013
    Publication date: November 7, 2013
    Inventors: Peter Williams, Thomas J. Taylor, Daniel J.B. Williams, Ian Gould, Mark A. Hayes
  • Publication number: 20130288235
    Abstract: The present invention relates to a novel method for analyzing nucleic acid sequences based on real-time detection of DNA polymerase-catalyzed incorporation of each of the four nucleotide bases, supplied individually and serially in a microfluidic system, to a reaction cell containing a template system comprising a DNA fragment of unknown sequence and an oligonucleotide primer. Incorporation of a nucleotide base into the template system can be detected by any of a variety of methods including but not limited to fluorescence and chemiluminescence detection. Alternatively, microcalorimetic detection of the heat generated by the incorporation of a nucleotide into the extending template system using thermopile, thermistor and refractive index measurements can be used to detect extension reactions.
    Type: Application
    Filed: May 14, 2013
    Publication date: October 31, 2013
    Inventors: Peter Williams, Thomas J. Taylor, Daniel J.B. Williams, Ian Gould, Mark A. Hayes
  • Publication number: 20130054524
    Abstract: Data objects are replicated from a source storage managed by a source server to a target storage managed by a target server. A source list is built of objects at the source server to replicate to the target server. The target server is queried to obtain a target list of objects at the target server. A replication list is built indicating objects on the source list not included on the target list to transfer to the target server. For each object in the replication list, data for the object not already at the target storage is sent to the target server and metadata on the object is sent to the target server to cause the target server to include the metadata in an entry for the object in a target server replication database. An entry for the object is added to a source server replication database.
    Type: Application
    Filed: April 25, 2012
    Publication date: February 28, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Matthew J. Anglin, David M. Cannon, Colin S. Dawson, Barry Fruchtman, Mark A. Haye, Howard N. Martin
  • Publication number: 20130054523
    Abstract: Data objects are replicated from a source storage managed by a source server to a target storage managed by a target server. A source list is built of objects at the source server to replicate to the target server. The target server is queried to obtain a target list of objects at the target server. A replication list is built indicating objects on the source list not included on the target list to transfer to the target server. For each object in the replication list, data for the object not already at the target storage is sent to the target server and metadata on the object is sent to the target server to cause the target server to include the metadata in an entry for the object in a target server replication database. An entry for the object is added to a source server replication database.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Matthew J. Anglin, David M. Cannon, Colin S. Dawson, Barry Fruchtman, Mark A. Haye, Howard N. Martin
  • Patent number: 8352448
    Abstract: A process is disclosed by which data is securely deleted in a transactionally consistent manner. This may be accomplished by committing a preparation transaction for a data object within a system managing the data object in order to return the system to an initial condition if necessary, attempting to commit an execution transaction with the data object only after committing the preparation transaction, and securely deleting any portion of the data object necessary to return the system to the initial condition if committing the execution transaction fails and to change the system to a completed condition only if committing the execution transaction succeeds. In a delete or move transaction an existing backup object may be assigned a new logically deleted state such that if the delete or move transaction fails, the data will be made accessible again.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: January 8, 2013
    Assignee: International Business Machines Corporation
    Inventors: Mark A. Haye, Matthew J. Anglin, David M. Cannon
  • Publication number: 20120258449
    Abstract: The present invention relates to a novel method for analyzing nucleic acid sequences based on real-time detection of DNA polymerase-catalyzed incorporation of each of the four nucleotide bases, supplied individually and serially in a microfluidic system, to a reaction cell containing a template system comprising a DNA fragment of unknown sequence and an oligonucleotide primer. Incorporation of a nucleotide base into the template system can be detected by any of a variety of methods including but not limited to fluorescence and chemiluminescence detection. Alternatively, microcalorimetic detection of the heat generated by the incorporation of a nucleotide into the extending template system using thermopile, thermistor and refractive index measurements can be used to detect extension reactions.
    Type: Application
    Filed: February 29, 2012
    Publication date: October 11, 2012
    Applicant: ARIZONA BOARD OF REGENTS
    Inventors: Peter Williams, Thomas J. Taylor, Daniel J.B. Williams, Ian Gould, Mark A. Hayes
  • Patent number: 8263365
    Abstract: The present invention relates to a novel method for analyzing nucleic acid sequences based on real-time detection of DNA polymerase-catalyzed incorporation of each of the four nucleotide bases, supplied individually and serially in a microfluidic system, to a reaction cell containing a template system comprising a DNA fragment of unknown sequence and an oligonucleotide primer. Incorporation of a nucleotide base into the template system can be detected by any of a variety of methods including but not limited to fluorescence and chemiluminescence detection. Alternatively, microcalorimetic detection of the heat generated by the incorporation of a nucleotide into the extending template system using thermopile, thermistor and refractive index measurements can be used to detect extension reactions.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: September 11, 2012
    Assignee: Arizona Board of Regents
    Inventors: Peter Williams, Thomas J. Taylor, Daniel J. B. Williams, Ian Gould, Mark A. Hayes