Patents by Inventor Mark A. Tapsak
Mark A. Tapsak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12115357Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.Type: GrantFiled: March 16, 2022Date of Patent: October 15, 2024Assignee: DEXCOM, INC.Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv Ullas Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
-
Publication number: 20240269353Abstract: Nitric oxide releasing particles, coatings, tapes, monoliths, and sprayable formulations for reducing the normal foreign body response (FBR) to implanted materials, enhancing wound healing, and/or increasing vascularization. The particles, coatings, tapes, monoliths, and sprayable formulations comprise a biodegradable polymer and an NO-releasing donor compound, and/or are formed of a biodegradable polymer with pendant NO-releasing functional groups.Type: ApplicationFiled: May 23, 2022Publication date: August 15, 2024Inventors: Mark Tapsak, Alice Widman, Andrew P. Gaudet De Lestard
-
Publication number: 20230139158Abstract: Disclosed are devices for determining an analyte concentration (e.g., glucose). The devices comprise a sensor configured to generate a signal associated with a concentration of an analyte and a sensing membrane located over the sensor. The sensing membrane comprises an enzyme layer, wherein the enzyme layer comprises an enzyme and a polymer comprising polyurethane and/or polyurea segments and one or more zwitterionic repeating units. The enzyme layer protects the enzyme and prevents it from leaching from the sensing membrane into a host or deactivating.Type: ApplicationFiled: December 27, 2022Publication date: May 4, 2023Applicant: DexCom, Inc.Inventors: Jiong Zou, Robert J. Boock, Andrew Trinin Dennis, Ted Tang Lee, Jeff T. Suri, David Sze, Mark A. Tapsak, Huashi Zhang, Shanger Wang
-
Publication number: 20230138407Abstract: Disclosed are devices for determining an analyte concentration (e.g., glucose). The devices comprise a sensor configured to generate a signal associated with a concentration of an analyte and a sensing membrane located over the sensor. The sensing membrane comprises an enzyme layer, wherein the enzyme layer comprises an enzyme and a polymer comprising polyurethane and/or polyurea segments and one or more zwitterionic repeating units. The enzyme layer protects the enzyme and prevents it from leaching from the sensing membrane into a host or deactivating.Type: ApplicationFiled: December 30, 2022Publication date: May 4, 2023Applicant: DexCom, Inc.Inventors: Jiong Zou, Robert J. Boock, Andrew Trinin Dennis, Ted Tang Lee, Jeff T. Suri, David Sze, Mark A. Tapsak, Huashi Zhang, Shanger Wang
-
Publication number: 20220214300Abstract: Disclosed are devices for determining an analyte concentration (e.g., glucose). The devices comprise a sensor configured to generate a signal associated with a concentration of an analyte and a sensing membrane located over the sensor. The sensing membrane comprises a biointerface layer which interfaces with a biological fluid containing the analyte to be measured. The biointerface layer can comprises a biointerface polymer, wherein the biointerface polymer comprises polyurethane and/or polyurea segments and one or more zwitterionic repeating units. The sensing membrane can also comprise an enzyme layer, wherein the enzyme layer comprises an enzyme and a polymer comprising polyurethane and/or polyurea segments and one or more zwitterionic repeating units. The sensing membrane can also comprise a diffusion-resistance layer, which can comprise a base polymer having a lowest Tg of greater than ?50 C.Type: ApplicationFiled: December 23, 2021Publication date: July 7, 2022Applicant: DEXCOM, INC.Inventors: Shanger Wang, Robert J. Boock, Andrew Trinin Dennis, Ted Tang Lee, Jeff T. Suri, David Sze, Mark A. Tapsak, Huashi Zhang, Jiong Zou
-
Publication number: 20220203038Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.Type: ApplicationFiled: March 16, 2022Publication date: June 30, 2022Applicant: DexCom, Inc.Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv Ullas Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
-
Publication number: 20220111148Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.Type: ApplicationFiled: December 20, 2021Publication date: April 14, 2022Applicant: DexCom, Inc.Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv Ullas Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
-
Patent number: 11262326Abstract: Disclosed are devices for determining an analyte concentration (e.g., glucose). The devices comprise a sensor configured to generate a signal associated with a concentration of an analyte and a sensing membrane located over the sensor. The sensing membrane comprises a biointerface layer which interfaces with a biological fluid containing the analyte to be measured. The biointerface layer can comprises a biointerface polymer, wherein the biointerface polymer comprises polyurethane and/or polyurea segments and one or more zwitterionic repeating units. The sensing membrane can also comprise an enzyme layer, wherein the enzyme layer comprises an enzyme and a polymer comprising polyurethane and/or polyurea segments and one or more zwitterionic repeating units. The sensing membrane can also comprise a diffusion-resistance layer, which can comprise a base polymer having a lowest Tg of greater than ?50 C.Type: GrantFiled: December 30, 2016Date of Patent: March 1, 2022Assignee: DEXCOM, INC.Inventors: Shanger Wang, Robert J. Boock, Andrew Trinin Dennis, Ted Tang Lee, Jeff T. Suri, David Sze, Mark A Tapsak, Huashi Zhang, Jiong Zou
-
Patent number: 11246990Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.Type: GrantFiled: February 27, 2018Date of Patent: February 15, 2022Assignee: DexCom, Inc.Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv Ullas Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
-
Publication number: 20210370088Abstract: Modulation of foreign body responses in living tissue, and more particularly, devices and related methods for light-based modulation of foreign body responses in living tissue are disclosed. Light sources are disclosed that provide light with characteristics for modulation of foreign body responses that may be elicited by percutaneous and/or subcutaneous devices, including medical devices and other consumer electronic devices. Light delivery structures are disclosed that propagate light from the light sources to irradiate associated subcutaneous tissues. Modulation of foreign body responses may include inhibiting collagen and fibrous tissue generation, modulating inflammation and healing, and/or increasing nitric oxide production and/or release. By modulating foreign body responses associated with percutaneous and/or subcutaneous devices, performance characteristics and lifetimes of such devices may be improved.Type: ApplicationFiled: May 26, 2021Publication date: December 2, 2021Inventors: Michael John Bergmann, Mark Tapsak, David T. Emerson, F. Neal Hunter, Andrew P. Gaudet de Lestard
-
Publication number: 20200375515Abstract: A biointerface membrane for an implantable device including a nonresorbable solid portion with a plurality of interconnected cavities therein adapted to support tissue ingrowth in vivo, and a bioactive agent incorporated into the biointerface membrane and adapted to modify the tissue response is provided. The bioactive agents can be chosen to induce vascularization and/or prevent barrier cell layer formation in vivo, and are advantageous when used with implantable devices wherein solutes are transported across the device-tissue interface.Type: ApplicationFiled: August 20, 2020Publication date: December 3, 2020Inventors: Mark Shults, James H. Brauker, Victoria Carr-Brendel, Mark Tapsak, Dubravka Markovic
-
Publication number: 20200187834Abstract: The present invention relates generally to systems and methods for increasing oxygen availability to implantable devices. The preferred embodiments provide a membrane system configured to provide protection of the device from the biological environment and/or a catalyst for enabling an enzymatic reaction, wherein the membrane system includes a polymer formed from a high oxygen soluble material. The high oxygen soluble polymer material is disposed adjacent to an oxygen-utilizing source on the implantable device so as to dynamically retain high oxygen availability to the oxygen-utilizing source during oxygen deficits. Membrane systems of the preferred embodiments are useful for implantable devices with oxygen-utilizing sources and/or that function in low oxygen environments, such as enzyme-based electrochemical sensors and cell transplantation devices.Type: ApplicationFiled: February 25, 2020Publication date: June 18, 2020Inventors: James R. Petisce, Mark A. Tapsak, Peter C. Simpson, Victoria Carr-Brendel, James H. Brauker
-
Patent number: 10610140Abstract: The present invention relates generally to systems and methods for increasing oxygen availability to implantable devices. The preferred embodiments provide a membrane system configured to provide protection of the device from the biological environment and/or a catalyst for enabling an enzymatic reaction, wherein the membrane system includes a polymer formed from a high oxygen soluble material. The high oxygen soluble polymer material is disposed adjacent to an oxygen-utilizing source on the implantable device so as to dynamically retain high oxygen availability to the oxygen-utilizing source during oxygen deficits. Membrane systems of the preferred embodiments are useful for implantable devices with oxygen-utilizing sources and/or that function in low oxygen environments, such as enzyme-based electrochemical sensors and cell transplantation devices.Type: GrantFiled: May 11, 2018Date of Patent: April 7, 2020Assignee: DexCom, Inc.Inventors: James R. Petisce, Mark A. Tapsak, Peter C. Simpson, Victoria Carr-Brendel, James H. Brauker
-
Publication number: 20190239782Abstract: Devices and methods for determining analyte levels are described. The devices and methods allow for the implantation of analyte-monitoring devices, such as glucose monitoring devices that result in the delivery of a dependable flow of blood to deliver sample to the implanted device. The devices include unique architectural arrangement in the sensor region that allows accurate data to be obtained over long periods of time.Type: ApplicationFiled: April 18, 2019Publication date: August 8, 2019Inventors: Mark C. Shults, Stuart J. Updike, Rathbun K. Rhodes, Barbara J. Gilligan, Mark A. Tapsak
-
Publication number: 20190083018Abstract: The invention provides an implantable membrane for regulating the transport of analytes therethrough that includes a matrix including a first polymer; and a second polymer dispersed throughout the matrix, wherein the second polymer forms a network of microdomains which when hydrated are not observable using photomicroscopy at 400× magnification or less. In one aspect, the homogeneous membrane of the present invention has hydrophilic domains dispersed substantially throughout a hydrophobic matrix to provide an optimum balance between oxygen and glucose transport to an electrochemical glucose sensor.Type: ApplicationFiled: November 9, 2018Publication date: March 21, 2019Inventors: Mark A. Tapsak, Rathbun K. Rhodes, Mark C. Shults, Jason D. McClure
-
Patent number: 10154807Abstract: The invention provides an implantable membrane for regulating the transport of analytes therethrough that includes a matrix including a first polymer; and a second polymer dispersed throughout the matrix, wherein the second polymer forms a network of microdomains which when hydrated are not observable using photomicroscopy at 400× magnification or less. In one aspect, the homogeneous membrane of the present invention has hydrophilic domains dispersed substantially throughout a hydrophobic matrix to provide an optimum balance between oxygen and glucose transport to an electrochemical glucose sensor.Type: GrantFiled: September 27, 2017Date of Patent: December 18, 2018Assignee: DexCom, Inc.Inventors: Mark A. Tapsak, Rathbun K. Rhodes, Mark C. Shults, Jason D. McClure
-
Publication number: 20180333896Abstract: Methods of transforming an ultra-high molecular weight polymer into a processable material and compositions resulting from those methods. The methods may include a combination of applying a shear force to a polymer and heating the polymer. Also described are methods for using the compositions.Type: ApplicationFiled: May 25, 2018Publication date: November 22, 2018Inventors: Mark A. Tapsak, Michael Janse, Binay Patel, Philip Brunner
-
Publication number: 20180333897Abstract: Methods of transforming an ultra-high molecular weight polymer into a processable material and compositions resulting from those methods. The methods may include a combination of applying a shear force to a polymer and heating the polymer. Also described are methods for using the compositions.Type: ApplicationFiled: May 25, 2018Publication date: November 22, 2018Inventors: Mark A. Tapsak, Michael Janse, Binay Patel, Philip Brunner
-
Publication number: 20180317827Abstract: The present invention provides a biointerface membrane for use with an implantable device that interferes with the formation of a barrier cell layer including; a first domain distal to the implantable device wherein the first domain supports tissue attachment and interferes with barrier cell layer formation and a second domain proximal to the implantable device wherein the second domain is resistant to cellular attachment and is impermeable to cells. In addition, the present invention provides sensors including the biointerface membrane, implantable devices including these sensors or biointerface membranes, and methods of monitoring glucose levels in a host utilizing the analyte detection implantable device of the invention. Other implantable devices which include the biointerface membrane of the present invention, such as devices for cell transplantation, drug delivery devices, and electrical signal delivery or measuring devices are also provided.Type: ApplicationFiled: July 5, 2018Publication date: November 8, 2018Inventors: James H. Brauker, Mark C. Shults, Mark A. Tapsak
-
Publication number: 20180256084Abstract: The present invention relates generally to systems and methods for increasing oxygen availability to implantable devices. The preferred embodiments provide a membrane system configured to provide protection of the device from the biological environment and/or a catalyst for enabling an enzymatic reaction, wherein the membrane system includes a polymer formed from a high oxygen soluble material. The high oxygen soluble polymer material is disposed adjacent to an oxygen-utilizing source on the implantable device so as to dynamically retain high oxygen availability to the oxygen-utilizing source during oxygen deficits. Membrane systems of the preferred embodiments are useful for implantable devices with oxygen-utilizing sources and/or that function in low oxygen environments, such as enzyme-based electrochemical sensors and cell transplantation devices.Type: ApplicationFiled: May 11, 2018Publication date: September 13, 2018Inventors: James R. Petisce, Mark A. Tapsak, Peter C. Simpson, Victoria Carr-Brendel, James H. Brauker