Patents by Inventor Mark A. Tapsak

Mark A. Tapsak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200375515
    Abstract: A biointerface membrane for an implantable device including a nonresorbable solid portion with a plurality of interconnected cavities therein adapted to support tissue ingrowth in vivo, and a bioactive agent incorporated into the biointerface membrane and adapted to modify the tissue response is provided. The bioactive agents can be chosen to induce vascularization and/or prevent barrier cell layer formation in vivo, and are advantageous when used with implantable devices wherein solutes are transported across the device-tissue interface.
    Type: Application
    Filed: August 20, 2020
    Publication date: December 3, 2020
    Inventors: Mark Shults, James H. Brauker, Victoria Carr-Brendel, Mark Tapsak, Dubravka Markovic
  • Publication number: 20200187834
    Abstract: The present invention relates generally to systems and methods for increasing oxygen availability to implantable devices. The preferred embodiments provide a membrane system configured to provide protection of the device from the biological environment and/or a catalyst for enabling an enzymatic reaction, wherein the membrane system includes a polymer formed from a high oxygen soluble material. The high oxygen soluble polymer material is disposed adjacent to an oxygen-utilizing source on the implantable device so as to dynamically retain high oxygen availability to the oxygen-utilizing source during oxygen deficits. Membrane systems of the preferred embodiments are useful for implantable devices with oxygen-utilizing sources and/or that function in low oxygen environments, such as enzyme-based electrochemical sensors and cell transplantation devices.
    Type: Application
    Filed: February 25, 2020
    Publication date: June 18, 2020
    Inventors: James R. Petisce, Mark A. Tapsak, Peter C. Simpson, Victoria Carr-Brendel, James H. Brauker
  • Patent number: 10610140
    Abstract: The present invention relates generally to systems and methods for increasing oxygen availability to implantable devices. The preferred embodiments provide a membrane system configured to provide protection of the device from the biological environment and/or a catalyst for enabling an enzymatic reaction, wherein the membrane system includes a polymer formed from a high oxygen soluble material. The high oxygen soluble polymer material is disposed adjacent to an oxygen-utilizing source on the implantable device so as to dynamically retain high oxygen availability to the oxygen-utilizing source during oxygen deficits. Membrane systems of the preferred embodiments are useful for implantable devices with oxygen-utilizing sources and/or that function in low oxygen environments, such as enzyme-based electrochemical sensors and cell transplantation devices.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: April 7, 2020
    Assignee: DexCom, Inc.
    Inventors: James R. Petisce, Mark A. Tapsak, Peter C. Simpson, Victoria Carr-Brendel, James H. Brauker
  • Publication number: 20190239782
    Abstract: Devices and methods for determining analyte levels are described. The devices and methods allow for the implantation of analyte-monitoring devices, such as glucose monitoring devices that result in the delivery of a dependable flow of blood to deliver sample to the implanted device. The devices include unique architectural arrangement in the sensor region that allows accurate data to be obtained over long periods of time.
    Type: Application
    Filed: April 18, 2019
    Publication date: August 8, 2019
    Inventors: Mark C. Shults, Stuart J. Updike, Rathbun K. Rhodes, Barbara J. Gilligan, Mark A. Tapsak
  • Publication number: 20190083018
    Abstract: The invention provides an implantable membrane for regulating the transport of analytes therethrough that includes a matrix including a first polymer; and a second polymer dispersed throughout the matrix, wherein the second polymer forms a network of microdomains which when hydrated are not observable using photomicroscopy at 400× magnification or less. In one aspect, the homogeneous membrane of the present invention has hydrophilic domains dispersed substantially throughout a hydrophobic matrix to provide an optimum balance between oxygen and glucose transport to an electrochemical glucose sensor.
    Type: Application
    Filed: November 9, 2018
    Publication date: March 21, 2019
    Inventors: Mark A. Tapsak, Rathbun K. Rhodes, Mark C. Shults, Jason D. McClure
  • Patent number: 10154807
    Abstract: The invention provides an implantable membrane for regulating the transport of analytes therethrough that includes a matrix including a first polymer; and a second polymer dispersed throughout the matrix, wherein the second polymer forms a network of microdomains which when hydrated are not observable using photomicroscopy at 400× magnification or less. In one aspect, the homogeneous membrane of the present invention has hydrophilic domains dispersed substantially throughout a hydrophobic matrix to provide an optimum balance between oxygen and glucose transport to an electrochemical glucose sensor.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: December 18, 2018
    Assignee: DexCom, Inc.
    Inventors: Mark A. Tapsak, Rathbun K. Rhodes, Mark C. Shults, Jason D. McClure
  • Publication number: 20180333897
    Abstract: Methods of transforming an ultra-high molecular weight polymer into a processable material and compositions resulting from those methods. The methods may include a combination of applying a shear force to a polymer and heating the polymer. Also described are methods for using the compositions.
    Type: Application
    Filed: May 25, 2018
    Publication date: November 22, 2018
    Inventors: Mark A. Tapsak, Michael Janse, Binay Patel, Philip Brunner
  • Publication number: 20180333896
    Abstract: Methods of transforming an ultra-high molecular weight polymer into a processable material and compositions resulting from those methods. The methods may include a combination of applying a shear force to a polymer and heating the polymer. Also described are methods for using the compositions.
    Type: Application
    Filed: May 25, 2018
    Publication date: November 22, 2018
    Inventors: Mark A. Tapsak, Michael Janse, Binay Patel, Philip Brunner
  • Publication number: 20180317827
    Abstract: The present invention provides a biointerface membrane for use with an implantable device that interferes with the formation of a barrier cell layer including; a first domain distal to the implantable device wherein the first domain supports tissue attachment and interferes with barrier cell layer formation and a second domain proximal to the implantable device wherein the second domain is resistant to cellular attachment and is impermeable to cells. In addition, the present invention provides sensors including the biointerface membrane, implantable devices including these sensors or biointerface membranes, and methods of monitoring glucose levels in a host utilizing the analyte detection implantable device of the invention. Other implantable devices which include the biointerface membrane of the present invention, such as devices for cell transplantation, drug delivery devices, and electrical signal delivery or measuring devices are also provided.
    Type: Application
    Filed: July 5, 2018
    Publication date: November 8, 2018
    Inventors: James H. Brauker, Mark C. Shults, Mark A. Tapsak
  • Publication number: 20180256084
    Abstract: The present invention relates generally to systems and methods for increasing oxygen availability to implantable devices. The preferred embodiments provide a membrane system configured to provide protection of the device from the biological environment and/or a catalyst for enabling an enzymatic reaction, wherein the membrane system includes a polymer formed from a high oxygen soluble material. The high oxygen soluble polymer material is disposed adjacent to an oxygen-utilizing source on the implantable device so as to dynamically retain high oxygen availability to the oxygen-utilizing source during oxygen deficits. Membrane systems of the preferred embodiments are useful for implantable devices with oxygen-utilizing sources and/or that function in low oxygen environments, such as enzyme-based electrochemical sensors and cell transplantation devices.
    Type: Application
    Filed: May 11, 2018
    Publication date: September 13, 2018
    Inventors: James R. Petisce, Mark A. Tapsak, Peter C. Simpson, Victoria Carr-Brendel, James H. Brauker
  • Patent number: 10039480
    Abstract: The present invention provides a biointerface membrane for use with an implantable device that interferes with the formation of a barrier cell layer including; a first domain distal to the implantable device wherein the first domain supports tissue attachment and interferes with barrier cell layer formation and a second domain proximal to the implantable device wherein the second domain is resistant to cellular attachment and is impermeable to cells. In addition, the present invention provides sensors including the biointerface membrane, implantable devices including these sensors or biointerface membranes, and methods of monitoring glucose levels in a host utilizing the analyte detection implantable device of the invention. Other implantable devices which include the biointerface membrane of the present invention, such as devices for cell transplantation, drug delivery devices, and electrical signal delivery or measuring devices are also provided.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: August 7, 2018
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Mark C. Shults, Mark A. Tapsak
  • Publication number: 20180192926
    Abstract: Devices and methods for determining analyte levels are described. The devices and methods allow for the implantation of analyte-monitoring devices, such as glucose monitoring devices that result in the delivery of a dependable flow of blood to deliver sample to the implanted device. The devices include unique architectural arrangement in the sensor region that allows accurate data to be obtained over long periods of time.
    Type: Application
    Filed: March 6, 2018
    Publication date: July 12, 2018
    Inventors: Mark C. Shults, Stuart J. Updike, Rathbun K. Rhodes, Barbara J. Gilligan, Mark A. Tapsak
  • Publication number: 20180185587
    Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.
    Type: Application
    Filed: February 27, 2018
    Publication date: July 5, 2018
    Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv Ullas Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
  • Patent number: 9993186
    Abstract: The present invention relates generally to systems and methods for increasing oxygen availability to implantable devices. The preferred embodiments provide a membrane system configured to provide protection of the device from the biological environment and/or a catalyst for enabling an enzymatic reaction, wherein the membrane system includes a polymer formed from a high oxygen soluble material. The high oxygen soluble polymer material is disposed adjacent to an oxygen-utilizing source on the implantable device so as to dynamically retain high oxygen availability to the oxygen-utilizing source during oxygen deficits. Membrane systems of the preferred embodiments are useful for implantable devices with oxygen-utilizing sources and/or that function in low oxygen environments, such as enzyme-based electrochemical sensors and cell transplantation devices.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: June 12, 2018
    Assignee: DexCom, Inc.
    Inventors: James R. Petisce, Mark A. Tapsak, Peter C. Simpson, Victoria Carr-Brendel, James H. Brauker
  • Patent number: 9937293
    Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: April 10, 2018
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv Ullas Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
  • Patent number: 9931067
    Abstract: Devices and methods for determining analyte levels are described. The devices and methods allow for the implantation of analyte-monitoring devices, such as glucose monitoring devices that result in the delivery of a dependable flow of blood to deliver sample to the implanted device. The devices include unique architectural arrangement in the sensor region that allows accurate data to be obtained over long periods of time.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: April 3, 2018
    Assignee: DexCom, Inc.
    Inventors: Mark C. Shults, Stuart J. Updike, Rathbun K. Rhodes, Barbara J. Gilligan, Mark A. Tapsak
  • Publication number: 20180024086
    Abstract: The present invention provides a sensor head for use in an implantable device that measures the concentration of an analyte in a biological fluid which includes: a non-conductive body; a working electrode, a reference electrode and a counter electrode, wherein the electrodes pass through the non-conductive body forming an electrochemically reactive surface at one location on the body and forming an electronic connection at another location on the body, further wherein the electrochemically reactive surface of the counter electrode is greater than the surface area of the working electrode; and a multi-region membrane affixed to the nonconductive body and covering the working electrode, reference electrode and counter electrode. In addition, the present invention provides an implantable device including at least one of the sensor heads of the invention and methods of monitoring glucose levels in a host utilizing the implantable device of the invention.
    Type: Application
    Filed: September 29, 2017
    Publication date: January 25, 2018
    Inventors: Rathbun K. Rhodes, Mark A. Tapsak, James H. Brauker, Mark C. Shults
  • Publication number: 20180014765
    Abstract: The invention provides an implantable membrane for regulating the transport of analytes therethrough that includes a matrix including a first polymer; and a second polymer dispersed throughout the matrix, wherein the second polymer forms a network of microdomains which when hydrated are not observable using photomicroscopy at 400× magnification or less. In one aspect, the homogeneous membrane of the present invention has hydrophilic domains dispersed substantially throughout a hydrophobic matrix to provide an optimum balance between oxygen and glucose transport to an electrochemical glucose sensor.
    Type: Application
    Filed: September 27, 2017
    Publication date: January 18, 2018
    Inventors: Mark A. Tapsak, Rathbun K. Rhodes, Mark C. Shults, Jason D. McClure
  • Patent number: 9804114
    Abstract: The present invention provides a sensor head for use in an implantable device that measures the concentration of an analyte in a biological fluid which includes: a non-conductive body; a working electrode, a reference electrode and a counter electrode, wherein the electrodes pass through the non-conductive body forming an electrochemically reactive surface at one location on the body and forming an electronic connection at another location on the body, further wherein the electrochemically reactive surface of the counter electrode is greater than the surface area of the working electrode; and a multi-region membrane affixed to the nonconductive body and covering the working electrode, reference electrode and counter electrode. In addition, the present invention provides an implantable device including at least one of the sensor heads of the invention and methods of monitoring glucose levels in a host utilizing the implantable device of the invention.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: October 31, 2017
    Assignee: DexCom, Inc.
    Inventors: Rathbun K. Rhodes, Mark A. Tapsak, James H. Brauker, Mark C. Shults
  • Patent number: 9801574
    Abstract: The invention provides an implantable membrane for regulating the transport of analytes therethrough that includes a matrix including a first polymer; and a second polymer dispersed throughout the matrix, wherein the second polymer forms a network of microdomains which when hydrated are not observable using photomicroscopy at 400× magnification or less. In one aspect, the homogeneous membrane of the present invention has hydrophilic domains dispersed substantially throughout a hydrophobic matrix to provide an optimum balance between oxygen and glucose transport to an electrochemical glucose sensor.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: October 31, 2017
    Assignee: DexCom, Inc.
    Inventors: Mark A. Tapsak, Rathbun K. Rhodes, Mark C. Shults, Jason D. McClure