Patents by Inventor Mark A. Tapsak

Mark A. Tapsak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120179014
    Abstract: Devices and methods for determining analyte levels are described. The devices and methods allow for the implantation of analyte-monitoring devices, such as glucose monitoring devices that result in the delivery of a dependable flow of blood to deliver sample to the implanted device. The devices include unique architectural arrangement in the sensor region that allows accurate data to be obtained over long periods of time.
    Type: Application
    Filed: March 2, 2012
    Publication date: July 12, 2012
    Applicant: DexCom, Inc.
    Inventors: Mark C. Shults, Stuart J. Updike, Rathbun K. Rhodes, Barbara J. Gilligan, Mark A. Tapsak
  • Patent number: 8155723
    Abstract: Devices and methods for determining analyte levels are described. The devices and methods allow for the implantation of analyte-monitoring devices, such as glucose monitoring devices that result in the delivery of a dependable flow of blood to deliver sample to the implanted device. The devices include unique architectural arrangement in the sensor region that allows accurate data to be obtained over long periods of time.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: April 10, 2012
    Assignee: DexCom, Inc.
    Inventors: Mark C. Shults, Stuart J. Updike, Rathbun K. Rhodes, Barbara J. Gilligan, Mark A. Tapsak
  • Patent number: 8118877
    Abstract: A membrane for implantation in soft tissue comprising a first domain that supports tissue ingrowth, disrupts contractile forces typically found in a foreign body response, encourages vascularity, and interferes with barrier cell layer formation, and a second domain that is resistant to cellular attachment, is impermeable to cells and cell processes, and allows the passage of analytes. The membrane allows for long-term analyte transport in vivo and is suitable for use as a biointerface for implantable analyte sensors, cell transplantation devices, drug delivery devices, and/or electrical signal delivering or measuring devices. The membrane architecture, including cavity size, depth, and interconnectivity, provide long-term robust functionality of the membrane in vivo.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: February 21, 2012
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Mark A. Tapsak, Mark C. Shults
  • Publication number: 20120040101
    Abstract: The invention provides an implantable membrane for regulating the transport of analytes therethrough that includes a matrix including a first polymer; and a second polymer dispersed throughout the matrix, wherein the second polymer forms a network of microdomains which when hydrated are not observable using photomicroscopy at 400× magnification or less. In one aspect, the homogeneous membrane of the present invention has hydrophilic domains dispersed substantially throughout a hydrophobic matrix to provide an optimum balance between oxygen and glucose transport to an electrochemical glucose sensor.
    Type: Application
    Filed: October 27, 2011
    Publication date: February 16, 2012
    Applicant: DexCom, Inc.
    Inventors: Mark A. Tapsak, Rathbun K. Rhodes, Mark C. Shults, Jason D. McClure
  • Publication number: 20110313543
    Abstract: A membrane for implantation in soft tissue comprising a first domain that supports tissue ingrowth, disrupts contractile forces typically found in a foreign body response, encourages vascularity, and interferes with barrier cell layer formation, and a second domain that is resistant to cellular attachment, is impermeable to cells and cell processes, and allows the passage of analytes. The membrane allows for long-term analyte transport in vivo and is suitable for use as a biointerface for implantable analyte sensors, cell transplantation devices, drug delivery devices, and/or electrical signal delivering or measuring devices. The membrane architecture, including cavity size, depth, and interconnectivity, provide long-term robust functionality of the membrane in vivo.
    Type: Application
    Filed: August 15, 2011
    Publication date: December 22, 2011
    Applicant: DexCom, Inc.
    Inventors: James H. Brauker, Victoria Carr-Brendel, Mark A. Tapsak
  • Publication number: 20110275919
    Abstract: The present invention relates generally to systems and methods for increasing oxygen availability to implantable devices. The preferred embodiments provide a membrane system configured to provide protection of the device from the biological environment and/or a catalyst for enabling an enzymatic reaction, wherein the membrane system includes a polymer formed from a high oxygen soluble material. The high oxygen soluble polymer material is disposed adjacent to an oxygen-utilizing source on the implantable device so as to dynamically retain high oxygen availability to the oxygen-utilizing source during oxygen deficits. Membrane systems of the preferred embodiments are useful for implantable devices with oxygen-utilizing sources and/or that function in low oxygen environments, such as enzyme-based electrochemical sensors and cell transplantation devices.
    Type: Application
    Filed: July 20, 2011
    Publication date: November 10, 2011
    Applicant: DexCom, Inc.
    Inventors: James Petisce, Mark A. Tapsak, Peter C. Simpson, Victoria Carr-Brendel
  • Patent number: 8053018
    Abstract: The invention provides an implantable membrane for regulating the transport of analytes therethrough that includes a matrix including a first polymer; and a second polymer dispersed throughout the matrix, wherein the second polymer forms a network of microdomains which when hydrated are not observable using photomicroscopy at 400× magnification or less. In one aspect, the homogeneous membrane of the present invention has hydrophilic domains dispersed substantially throughout a hydrophobic matrix to provide an optimum balance between oxygen and glucose transport to an electrochemical glucose sensor.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: November 8, 2011
    Assignee: DexCom, Inc.
    Inventors: Mark A. Tapsak, Rathbun K. Rhodes, Mark C. Shults, Jason D. McClure
  • Publication number: 20110270158
    Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.
    Type: Application
    Filed: July 11, 2011
    Publication date: November 3, 2011
    Applicant: DexCom, Inc.
    Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv U. Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
  • Patent number: 8050731
    Abstract: The invention provides an implantable membrane for regulating the transport of analytes therethrough that includes a matrix including a first polymer; and a second polymer dispersed throughout the matrix, wherein the second polymer forms a network of microdomains which when hydrated are not observable using photomicroscopy at 400× magnification or less. In one aspect, the homogeneous membrane of the present invention has hydrophilic domains dispersed substantially throughout a hydrophobic matrix to provide an optimum balance between oxygen and glucose transport to an electrochemical glucose sensor.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: November 1, 2011
    Assignee: DexCom, Inc.
    Inventors: Mark A. Tapsak, Rathbun K. Rhodes, Mark C. Shults, Jason D. McClure
  • Patent number: 7976492
    Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: July 12, 2011
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv U. Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
  • Publication number: 20110124992
    Abstract: An implantable sensor for use in measuring a concentration of an analyte such as glucose in a bodily fluid, including a body with a sensing region adapted for transport of analytes between the sensor and the bodily fluid, wherein the sensing region is located on a curved portion of the body such that when a foreign body capsule forms around the sensor, a contractile force is exerted by the foreign body capsule toward the sensing region. The body is partially or entirely curved, partially or entirely covered with an anchoring material for supporting tissue ingrowth, and designed for subcutaneous tissue implantation. The geometric design, including curvature, shape, and other factors minimize chronic inflammatory response at the sensing region and contribute to improved performance of the sensor in vivo.
    Type: Application
    Filed: January 28, 2011
    Publication date: May 26, 2011
    Applicant: DexCom, Inc.
    Inventors: James H. Brauker, Victoria Carr-Brendel, Paul V. Neale, Laura A. Martinson, Mark A. Tapsak
  • Patent number: 7896809
    Abstract: Disclosed herein are systems and methods for a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes first and second working electrodes to measure analyte or non-analyte related signal, both of which electrode include an interference domain.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: March 1, 2011
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, James H. Brauker, Paul V. Goode, Apurv Ullas Kamath, James R. Petisce, Kum Ming Woo, Melissa A. Nicholas, Robert J. Boock, Monica A. Rixman, John Burd, Rathburn K. Rhodes, Mark A. Tapsak
  • Publication number: 20110046467
    Abstract: Disclosed herein are systems and methods for a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes first and second working electrodes to measure analyte or non-analyte related signal, both of which electrode include an interference domain.
    Type: Application
    Filed: October 29, 2010
    Publication date: February 24, 2011
    Applicant: DexCom, Inc.
    Inventors: Peter C. Simpson, James H. Brauker, Paul V. Goode, Apurv U. Kamath, James R. Petisce, Kum Ming Woo, Melissa A. Nicholas, Robert J. Boock, Monica A. Rixman, John Burd, Rathburn K. Rhodes, Mark A. Tapsak
  • Patent number: 7881763
    Abstract: An implantable sensor for use in measuring a concentration of an analyte such as glucose in a bodily fluid, including a body with a sensing region adapted for transport of analytes between the sensor and the bodily fluid, wherein the sensing region is located on a curved portion of the body such that when a foreign body capsule forms around the sensor, a contractile force is exerted by the foreign body capsule toward the sensing region. The body is partially or entirely curved, partially or entirely covered with an anchoring material for supporting tissue ingrowth, and designed for subcutaneous tissue implantation. The geometric design, including curvature, shape, and other factors minimize chronic inflammatory response at the sensing region and contribute to improved performance of the sensor in vivo.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: February 1, 2011
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Victoria Carr-Brendel, Paul V. Neale, Laura A. Martinson, Mark A. Tapsak
  • Patent number: 7875293
    Abstract: A biointerface membrane for an implantable device including a nonresorbable solid portion with a plurality of interconnected cavities therein adapted to support tissue ingrowth in vivo, and a bioactive agent incorporated into the biointerface membrane and adapted to modify the tissue response is provided. The bioactive agents can be chosen to induce vascularization and/or prevent barrier cell layer formation in vivo, and are advantageous when used with implantable devices wherein solutes are transported across the device-tissue interface.
    Type: Grant
    Filed: May 10, 2004
    Date of Patent: January 25, 2011
    Assignee: DexCom, Inc.
    Inventors: Mark Shults, James H. Brauker, Victoria Carr-Brendel, Mark Tapsak, Dubravka Markovic
  • Patent number: 7860545
    Abstract: An implantable analyte-measuring device including a membrane adapted to promote vascularization and/or interfere with barrier cell layer formation. The membrane includes any combination of materials, architecture, and bioactive agents that facilitate analyte transport to provide long-term in vivo performance of the implantable analyte-measuring device.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: December 28, 2010
    Assignee: DexCom, Inc.
    Inventors: Mark C. Shults, James H. Brauker, Victoria Carr-Brendel, Mark A. Tapsak, Dubravka Markovic, Stuart J. Updike, Rathbun K. Rhodes
  • Publication number: 20100286496
    Abstract: Disclosed herein are systems and methods for a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes first and second working electrodes to measure analyte or non-analyte related signal, both of which electrode include an interference domain.
    Type: Application
    Filed: July 19, 2010
    Publication date: November 11, 2010
    Applicant: DexCom, Inc.
    Inventors: Peter C. Simpson, James H. Brauker, Paul V. Goode, Apurv U. Kamath, James R. Petisce, Kum Ming Woo, Melissa A. Nicholas, Robert J. Boock, Monica A. Rixman, John Burd, Rathburn K. Rhodes, Mark A. Tapsak
  • Patent number: 7828728
    Abstract: The present invention relates generally to membranes utilized with implantable devices, such as devices for the detection of analyte concentrations in a biological sample. More particularly, the invention relates to novel silicone-hydrophilic polymer blend membranes, and to devices and implantable devices including these membranes.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: November 9, 2010
    Assignee: DexCom, Inc.
    Inventors: Robert Boock, Monica Rixman, James H. Brauker, James R. Petisce, Peter C. Simpson, Mark Brister, Mark A. Tapsak, Victoria Carr-Brendel
  • Publication number: 20100256779
    Abstract: A membrane for implantation in soft tissue comprising a first domain that supports tissue ingrowth, disrupts contractile forces typically found in a foreign body response, encourages vascularity, and interferes with barrier cell layer formation, and a second domain that is resistant to cellular attachment, is impermeable to cells and cell processes, and allows the passage of analytes. The membrane allows for long-term analyte transport in vivo and is suitable for use as a biointerface for implantable analyte sensors, cell transplantation devices, drug delivery devices, and/or electrical signal delivering or measuring devices. The membrane architecture, including cavity size, depth, and interconnectivity, provide long-term robust functionality of the membrane in vivo.
    Type: Application
    Filed: January 17, 2007
    Publication date: October 7, 2010
    Inventors: James H. Brauker, Victoria Carr-Brendel, Mark A. Tapsak
  • Publication number: 20100185071
    Abstract: Disclosed herein are systems and methods for a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes first and second working electrodes to measure analyte or non-analyte related signal, both of which electrode include an interference domain.
    Type: Application
    Filed: March 29, 2010
    Publication date: July 22, 2010
    Applicant: DexCom, Inc.
    Inventors: Peter C. Simpson, James H. Brauker, Paul V. Goode, Apurv U. Kamath, James R. Petisce, Kum Ming Woo, Melissa A. Nicholas, Robert J. Boock, Monica A. Rixman, John Burd, Rathburn K. Rhodes, Mark A. Tapsak