Patents by Inventor Mark A. Tapsak

Mark A. Tapsak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7632228
    Abstract: The present invention provides a biointerface membrane for use with an implantable device that interferes with the formation of a barrier cell layer including; a first domain distal to the implantable device wherein the first domain supports tissue attachment and interferes with barrier cell layer formation and a second domain proximal to the implantable device wherein the second domain is resistant to cellular attachment and is impermeable to cells. In addition, the present invention provides sensors including the biointerface membrane, implantable devices including these sensors or biointerface membranes, and methods of monitoring glucose levels in a host utilizing the analyte detection implantable device of the invention. Other implantable devices which include the biointerface membrane of the present invention, such as devices for cell transplantation, drug delivery devices, and electrical signal delivery or measuring devices are also provided.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: December 15, 2009
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Mark C. Shults, Mark A. Tapsak
  • Publication number: 20090299276
    Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.
    Type: Application
    Filed: August 6, 2009
    Publication date: December 3, 2009
    Applicant: DexCom, Inc.
    Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv U. Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
  • Patent number: 7591801
    Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, and optionally a single point glucose monitor are provided. Manual integrations provide for a physical association between the devices wherein a user (for example, patient or doctor) manually selects the amount, type, and/or time of delivery. Semi-automated integration of the devices includes integrations wherein an operable connection between the integrated components aids the user (for example, patient or doctor) in selecting, inputting, calculating, or validating the amount, type, or time of medicament delivery of glucose values, for example, by transmitting data to another component and thereby reducing the amount of user input required. Automated integration between the devices includes integrations wherein an operable connection between the integrated components provides for full control of the system without required user interaction.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: September 22, 2009
    Assignee: Dexcom, Inc.
    Inventors: James H. Brauker, Mark A. Tapsak, Sean T. Saint, Apurv U. Kamath, Paul V. Neale, Peter C. Simpson, Michael Robert Mensinger, Dubravka Markovic
  • Publication number: 20090076356
    Abstract: Disclosed herein are systems and methods for a continuous analyte sensor, such as a continuous glucose sensor. One such system utilizes first and second working electrodes to measure analyte or non-analyte related signal, both of which electrode include an interference domain.
    Type: Application
    Filed: November 3, 2008
    Publication date: March 19, 2009
    Applicant: DexCom, Inc.
    Inventors: Peter C. Simpson, James H. Brauker, Paul V. Goode, Apurv U. Kamath, James R. Petisce, Kum Ming Woo, Melissa A. Nicholas, Robert J. Boock, Monica A. Rixman, John Burd, Rathburn K. Rhodes, Mark A. Tapsak
  • Publication number: 20090062633
    Abstract: An implantable analyte sensor including a sensing region for measuring the analyte and a non-sensing region for immobilizing the sensor body in the host. The sensor is implanted in a precisely dimensioned pocket to stabilize the analyte sensor in vivo and enable measurement of the concentration of the analyte in the host before and after formation of a foreign body capsule around the sensor. The sensor further provides a transmitter for RF transmission through the sensor body, electronic circuitry, and a power source optimized for long-term use in the miniaturized sensor body.
    Type: Application
    Filed: November 4, 2008
    Publication date: March 5, 2009
    Applicant: DexCorn, Inc.
    Inventors: James H. Brauker, Mark A. Tapsak, Mark Shults, Victoria Carr-Brendel, Jack C. Fisher, William J. Seare, JR., Paul V. Neale
  • Publication number: 20090045055
    Abstract: The present invention provides a sensor head for use in an implantable device that measures the concentration of an analyte in a biological fluid which includes: a non-conductive body; a working electrode, a reference electrode and a counter electrode, wherein the electrodes pass through the non-conductive body forming an electrochemically reactive surface at one location on the body and forming an electronic connection at another location on the body, further wherein the electrochemically reactive surface of the counter electrode is greater than the surface area of the working electrode; and a multi-region membrane affixed to the nonconductive body and covering the working electrode, reference electrode and counter electrode. In addition, the present invention provides an implantable device including at least one of the sensor heads of the invention and methods of monitoring glucose levels in a host utilizing the implantable device of the invention.
    Type: Application
    Filed: October 28, 2008
    Publication date: February 19, 2009
    Applicant: DexCom, Inc.
    Inventors: Rathbun K. Rhodes, Mark C. Shults, Mark A. Tapsak, James H. Brauker
  • Patent number: 7471972
    Abstract: The present invention provides a sensor head for use in an implantable device that measures the concentration of an analyte in a biological fluid which includes: a non-conductive body; a working electrode, a reference electrode and a counter electrode, wherein the electrodes pass through the non-conductive body forming an electrochemically reactive surface at one location on the body and forming an electronic connection at another location on the body, further wherein the electrochemically reactive surface of the counter electrode is greater than the surface area of the working electrode; and a multi-region membrane affixed to the nonconductive body and covering the working electrode, reference electrode and counter electrode. In addition, the present invention provides an implantable device including at least one of the sensor heads of the invention and methods of monitoring glucose levels in a host utilizing the implantable device of the invention.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: December 30, 2008
    Assignee: DexCom, Inc.
    Inventors: Rathbun Rhodes, Mark A. Tapsak, James H. Brauker, Mark C. Shults
  • Publication number: 20080228054
    Abstract: An implantable analyte-measuring device including a membrane adapted to promote vascularization and/or interfere with barrier cell layer formation. The membrane includes any combination of materials, architecture, and bioactive agents that facilitate analyte transport to provide long-term in vivo performance of the implantable analyte-measuring device.
    Type: Application
    Filed: February 26, 2008
    Publication date: September 18, 2008
    Applicant: DexCom, Inc.
    Inventors: Mark C. Shults, James H. Brauker, Victoria Carr-Brendel, Mark A. Tapsak, Dubravka Markovic, Stuart J. Updike, Rathbun K. Rhodes
  • Publication number: 20080228051
    Abstract: An implantable analyte-measuring device including a membrane adapted to promote vascularization and/or interfere with barrier cell layer formation. The membrane includes any combination of materials, architecture, and bioactive agents that facilitate analyte transport to provide long-term in vivo performance of the implantable analyte-measuring device.
    Type: Application
    Filed: February 26, 2008
    Publication date: September 18, 2008
    Applicant: DexCom. Inc.
    Inventors: Mark C. Shults, James H. Brauker, Victoria Carr-Brendel, Mark A. Tapsak, Dubravka Markovic, Stuart J. Updike, Rathbun K. Rhodes
  • Patent number: 7379765
    Abstract: The present invention relates generally to systems and methods for increasing oxygen availability to implantable devices. The preferred embodiments provide a membrane system configured to provide protection of the device from the biological environment and/or a catalyst for enabling an enzymatic reaction, wherein the membrane system includes a polymer formed from a high oxygen soluble material. The high oxygen soluble polymer material is disposed adjacent to an oxygen-utilizing source on the implantable device so as to dynamically retain high oxygen availability to the oxygen-utilizing source during oxygen deficits. Membrane systems of the preferred embodiments are useful for implantable devices with oxygen-utilizing sources and/or that function in low oxygen environments, such as enzyme-based electrochemical sensors and cell transplantation devices.
    Type: Grant
    Filed: July 21, 2004
    Date of Patent: May 27, 2008
    Assignee: DexCom, Inc.
    Inventors: James Petisce, Mark A. Tapsak, Peter C. Simpson, Victoria Carr-Brendel, James H. Brauker
  • Patent number: 7365134
    Abstract: Compounds that include silicon-containing groups, and optionally urethane groups, urea groups, or combinations thereof (i.e., polyurethanes, polyureas, or polyurethane-ureas), as well as materials and methods for making such compounds.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: April 29, 2008
    Assignee: Medtronic, Inc
    Inventors: Michael Eric Benz, Christopher M. Hobot, David L. Miller, David A. Pearson, Mark A. Tapsak, Edward DiDomenico, Randall V. Sparer
  • Patent number: 7226978
    Abstract: The invention provides an implantable membrane for regulating the transport of analytes therethrough that includes a matrix including a first polymer; and a second polymer dispersed throughout the matrix, wherein the second polymer forms a network of microdomains which when hydrated are not observable using photomicroscopy at 400× magnification or less. In one aspect, the homogeneous membrane of the present invention has hydrophilic domains dispersed substantially throughout a hydrophobic matrix to provide an optimum balance between oxygen and glucose transport to an electrochemical glucose sensor.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: June 5, 2007
    Assignee: DexCom, Inc.
    Inventors: Mark A. Tapsak, Rathbun K. Rhodes, Mark C. Shults, Jason D. McClure
  • Patent number: 7192450
    Abstract: A membrane for implantation in soft tissue comprising a first domain that supports tissue ingrowth, disrupts contractile forces typically found in a foreign body response, encourages vascularity, and interferes with barrier cell layer formation, and a second domain that is resistant to cellular attachment, is impermeable to cells and cell processes, and allows the passage of analytes. The membrane allows for long-term analyte transport in vivo and is suitable for use as a biointerface for implantable analyte sensors, cell transplantation devices, drug delivery devices, and/or electrical signal delivering or measuring devices. The membrane architecture, including cavity size, depth, and interconnectivity, provide long-term robust functionality of the membrane in vivo.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: March 20, 2007
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Victoria Carr-Brendel, Mark A. Tapsak
  • Patent number: 7136689
    Abstract: Devices and methods for determining analyte levels are described. The devices and methods allow for the implantation of analyte-monitoring devices, such as glucose monitoring devices that result in the delivery of a dependable flow of blood to deliver sample to the implanted device. The devices include unique architectural arrangement in the sensor region that slows accurate date to be obtained over long periods of time.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: November 14, 2006
    Assignee: DexCom, Inc.
    Inventors: Mark C. Shults, Stuart J. Updike, Rathbun K. Rhodes, Barbara J. Gilligan, Mark A. Tapsak
  • Patent number: 7134999
    Abstract: An implantable sensor for use in measuring a concentration of an analyte such as glucose in a bodily fluid, including a body with a sensing region adapted for transport of analytes between the sensor and the bodily fluid, wherein the sensing region is located on a curved portion of the body such that when a foreign body capsule forms around the sensor, a contractile force is exerted by the foreign body capsule toward the sensing region. The body is partially or entirely curved, partially or entirely covered with an anchoring material for supporting tissue ingrowth, and designed for subcutaneous tissue implantation. The geometric design, including curvature, shape, and other factors minimize chronic inflammatory response at the sensing region and contribute to improved performance of the sensor in vivo.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: November 14, 2006
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Victoria Carr-Brendel, Paul V. Neale, Laura A. Martinson, Mark A. Tapsak
  • Patent number: 7108778
    Abstract: The present invention relates generally to systems and methods for increasing oxygen generation in electrochemical sensors in order to overcome the oxygen limitations. The preferred embodiments employ electrode systems with at least two electrodes in relatively close proximity to each other; wherein at least one electrode is configured to generate oxygen and at least one other electrode is configured to sense an analyte or a product of a reaction indicative of the concentration of analyte. The oxygen generated by the oxygen-generating electrode is available to the catalyst within a membrane system and/or the counter electrode, thereby enabling the electrochemical sensors of the preferred embodiments to function even during ischemic conditions.
    Type: Grant
    Filed: July 21, 2004
    Date of Patent: September 19, 2006
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, Paul Goode, Mark A. Tapsak, Victoria Carr-Brendel
  • Patent number: 6984700
    Abstract: Compounds that include silicon-containing groups, and optionally urethane groups, urea groups, or combinations thereof (i.e., polyurethanes, polyureas, or polyurethane-ureas), as well as materials and methods for making such compounds.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: January 10, 2006
    Assignee: Medtronic, Inc.
    Inventors: Michael Eric Benz, Christopher M. Hobot, David L. Miller, David A. Pearson, Mark A. Tapsak, Edward DiDomenico, Randall V. Sparer
  • Patent number: 6879861
    Abstract: A novel polymeric electrically insulating material that includes a linked voltage stabilizing agent. Also provided are methods of making the novel material and articles and devices that incorporate the novel material, particularly implantable medical devices.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: April 12, 2005
    Assignee: Medtronic, Inc.
    Inventors: Michael E. Benz, Mark A. Tapsak, Angela Pratt, Randall V. Sparer
  • Patent number: 6862465
    Abstract: Devices and methods for determining analyte levels are described. The devices and methods allow for the implantation of analyte-monitoring devices, such as glucose monitoring devices that result in the delivery of a dependable flow of blood to deliver sample to the implanted device. The devices include unique architectural arrangement in the sensor region that allows accurate data to be obtained over long periods of time.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: March 1, 2005
    Assignee: DexCom, Inc.
    Inventors: Mark C. Shults, Stuart J. Updike, Rathbun K. Rhodes, Barbara J. Gilligan, Mark A. Tapsak
  • Publication number: 20040186362
    Abstract: The present invention provides a biointerface membrane for use with an implantable device that interferes with the formation of a barrier cell layer including; a first domain distal to the implantable device wherein the first domain supports tissue attachment and interferes with barrier cell layer formation and a second domain proximal to the implantable device wherein the second domain is resistant to cellular attachment and is impermeable to cells. In addition, the present invention provides sensors including the biointerface membrane, implantable devices including these sensors or biointerface membranes, and methods of monitoring glucose levels in a host utilizing the analyte detection implantable device of the invention. Other implantable devices which include the biointerface membrane of the present invention, such as devices for cell transplantation, drug delivery devices, and electrical signal delivery or measuring devices are also provided.
    Type: Application
    Filed: January 29, 2004
    Publication date: September 23, 2004
    Applicant: Dexcom, Inc.
    Inventors: James H. Brauker, Mark C. Shults, Mark A. Tapsak