Patents by Inventor Mark C. Morris

Mark C. Morris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9175568
    Abstract: A method is provided for manufacturing a turbine component. The method includes forming a first intermediate turbine article with an additive manufacturing process; encapsulating the first intermediate turbine article with an encapsulation layer to form a second intermediate turbine article; and consolidating the second intermediate turbine article to produce the turbine component.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: November 3, 2015
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Daniel Ryan, Mark C. Morris, Donald G. Godfrey, Steve Starr
  • Publication number: 20150298212
    Abstract: In accordance with an exemplary embodiment, a method of forming a ceramic reinforced titanium alloy includes the steps of providing, in a pre-alloy powdered form, a ceramic reinforced titanium alloy composition that is capable of achieving a dispersion-strengthened microstructure, directing a low energy density energy beam at a portion of the alloy composition, and forming a ceramic reinforced titanium alloy metal having ceramic particulates of less than 10 ?m on a weight-average basis. The step of forming includes the sub-steps of withdrawing the energy beam from the portion of the powdered alloy composition and cooling the portion of the powdered alloy composition at a rate greater than or equal to about 106° F. per second, thereby forming the ceramic reinforced titanium alloy metal.
    Type: Application
    Filed: April 16, 2014
    Publication date: October 22, 2015
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Brian Hann, Daira Legzdina, Mark C. Morris, Donald G. Godfrey
  • Patent number: 9120151
    Abstract: Substantially defect-free titanium aluminide components and methods are provided for manufacturing the same from articles formed by consolidation processes. The method includes providing an intermediate article comprised of a titanium aluminide alloy and formed by a consolidation process. The intermediate article is encapsulated with an aluminum-containing encapsulation layer. The intermediate article is compacted after the encapsulation step. A substantially defect-free titanium aluminide component comprises a compacted three-dimensional article comprised of titanium aluminide and formed by a consolidation process and an aluminum-containing encapsulation layer on at least one surface of the compacted three-dimensional article. The aluminum-containing encapsulation layer comprises an aluminide material, MCrAlY wherein M is cobalt, nickel, or a combination of cobalt and nickel, or TiAlCr.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: September 1, 2015
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Donald G. Godfrey, Mark C. Morris, George Reimer, William F. Hehmann, Daira Legzdina, Richard Fox, Yiping Hu, Harry Lester Kington
  • Patent number: 9085980
    Abstract: A method is provided for repairing a turbine component with a distressed portion. The method includes machining the turbine component into a first intermediate turbine article such that the distressed portion is removed; and rebuilding the first intermediate turbine article into the turbine component with an additive manufacturing process.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: July 21, 2015
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Don Mittendorf, Daniel Ryan, Donald G. Godfrey, Mark C. Morris, Harry Kington
  • Patent number: 9068469
    Abstract: A turbine section of a gas turbine engine includes a housing, a rotor assembly, and a seal assembly. The rotor assembly includes a rotor disk, a rotor platform coupled to the rotor disk, and a rotor blade extending from the rotor platform into the mainstream hot gas flow path. The stator assembly includes a stator platform with a stator vane that extends from the stator platform into the mainstream hot gas flow path. The seal assembly includes a first flow discourager extending in a first direction from the rotor platform, a second flow discourager extending in a second direction from the stator platform, the first flow discourager axially overlapping the second flow discourager such that the second flow discourager is interior to the first flow discourager in a radial direction, a hard coating applied to the first flow discourager, and an abradable coating applied to the second flow discourager.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: June 30, 2015
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Bradley Reed Tucker, Jason Smoke, Mark C. Morris
  • Publication number: 20150144496
    Abstract: A method is provided for manufacturing a component. The method includes connecting a component comprising an internal passage and formed by an additive manufacturing process to a power supply, the component functioning as an anode, connecting a cathode to the power supply, the cathode being disposed in an electrolyte solution, the cathode being positioned externally to the internal passage of the component, contacting the internal passage of the component with the electrolyte solution, and using the power supply, applying a potential difference and current flow between the component and the cathode.
    Type: Application
    Filed: November 26, 2013
    Publication date: May 28, 2015
    Inventors: Mark C. Morris, Klaus Helmut Schwarz, Donald G. Godfrey, Andy Szuromi
  • Patent number: 9039917
    Abstract: A method is provided for manufacturing a component. The method includes forming a diffusion coating on a first intermediate article formed by an additive manufacturing process. The diffusion coating is removed from the first intermediate article forming a second intermediate article. The diffusion coating is formed by applying a layer of coating material on at least one surface of the first intermediate article and diffusion heat treating the first intermediate article and the layer. The diffusion coating comprises a surface additive layer and a diffusion layer below the surface additive layer. The formation of the diffusion coating and removal thereof may be repeated at least once.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: May 26, 2015
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Andy Szuromi, Daniel Ryan, Donald G. Godfrey, Mark C. Morris
  • Publication number: 20150114611
    Abstract: A heat exchange system includes a tubular fan air inlet portion and a tubular cooled air outlet portion connected to a first end of a tubular mid portion. The heat exchange system further includes a tubular hot air inlet portion and a tubular recycled fan air outlet portion connected a second end of the mid portion. Still further, the heat exchange system includes an integrally-formed, compliant heat exchanger tube extending between the hot air inlet portion and the cooled air outlet portion within the mid portion to define a heat exchanger first flow passage within the heat exchanger tube and a second flow passage outside of the heat exchanger tube but within the tubular mid portion. Methods for fabricating such heat exchange systems are also provided.
    Type: Application
    Filed: October 28, 2013
    Publication date: April 30, 2015
    Inventors: Mark C. Morris, Donald G. Godfrey, David Waldman
  • Publication number: 20150104326
    Abstract: A turbine rotor blade is provided for a turbine section of an engine. The turbine rotor blade includes a platform and an airfoil extending from the platform into a mainstream gas path of the turbine section. The airfoil includes a first side wall; a second side wall joined to the first side wall at a leading edge and a trailing edge; a tip cap extending between the first side wall and the second side wall; a first parapet wall extending from the first side wall; and a first cooling hole through the tip cap and the first parapet wall configured to deliver cooling air. The first cooling hole has a closed channel section and an open channel section. The open channel section forms a slot.
    Type: Application
    Filed: October 16, 2013
    Publication date: April 16, 2015
    Inventors: David Waldman, Mark C. Morris, Malak Fouad Malak
  • Publication number: 20150104327
    Abstract: In accordance with an exemplary embodiment, a turbine rotor blade is provided for a turbine section of an engine. The turbine rotor blade includes a platform and an airfoil extending from the platform into a mainstream gas path of the turbine section. The airfoil includes a first side wall; a second side wall joined to the first side wall at a leading edge and a trailing edge; a tip cap extending between the first side wall and the second side wall; a first parapet wall extending from the first side wall; a first parapet wall cavity formed at least partially within the first parapet wall; and a first cooling hole extending between the first parapet wall cavity and a first surface of the first parapet wall such that cooling air flows through the first parapet wall cavity, through the first cooling hole, and out of the first parapet wall.
    Type: Application
    Filed: October 16, 2013
    Publication date: April 16, 2015
    Inventors: Malak Fouad Malak, Mark C. Morris, David Waldman
  • Publication number: 20150093279
    Abstract: In accordance with an exemplary embodiment, a method of forming a oxide dispersion-strengthened alloy metal includes the steps of providing, in a powdered form, an oxide dispersion-strengthened alloy composition that is capable of achieving a dispersion-strengthened microstructure, directing a low energy density energy beam at a portion of the alloy composition, withdrawing the energy beam from the portion of the powdered alloy composition, and cooling the portion of the powdered alloy composition at a rate greater than or equal to about 106° F. per second, thereby forming the oxide dispersion-strengthened alloy metal.
    Type: Application
    Filed: October 2, 2013
    Publication date: April 2, 2015
    Inventors: Harry Lester Kington, Donald G. Godfrey, Mark C. Morris, Michael G. Volas, Brian Hann, Robert J. Dawson
  • Publication number: 20150075178
    Abstract: A turbine rotor blade is provided. The turbine rotor blade includes a root, a platform coupled to the root, and an airfoil extending from the platform. The platform has a leading edge, a trailing edge, a suction side edge, and a pressure side edge. The pressure side edge includes a first concave portion.
    Type: Application
    Filed: September 17, 2013
    Publication date: March 19, 2015
    Inventors: Steve Halfmann, Mark C. Morris, Jason Smoke, Brandan Wakefield, Bob Mitlin
  • Publication number: 20150047935
    Abstract: A vibration isolator assembly includes a bellows component, a piston component, a shaft component, and a housing component, wherein at least one of the bellows component, the piston component, the shaft component, and the housing component is formed using additive manufacturing techniques.
    Type: Application
    Filed: July 2, 2012
    Publication date: February 19, 2015
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Donald G. Godfrey, Brian Cottrell, Mark C. Morris, Zach Rogers
  • Publication number: 20140360698
    Abstract: Unitary heat exchangers having integrally-formed compliant heat exchanger tubes and heat exchange systems including the same are provided. The unitary heat exchanger comprises an inlet plenum and an outlet plenum and a plurality of integrally-formed compliant heat exchanger tubes. The plurality of integrally-formed compliant heat exchanger tubes extend between and are integral with the inlet and outlet plenums to define a heat exchanger first flow passage. Each integrally-formed compliant heat exchanger tube comprises a tubular member and a plurality of integral heat transfer fins extend radially outwardly from at least one portion of the tubular member. The tubular member has a proximal tube end and a distal tube end and comprises a tubular wall having an outer wall surface and an inner wall surface.
    Type: Application
    Filed: June 6, 2013
    Publication date: December 11, 2014
    Inventors: David Waldman, Mark C. Morris, Donald G. Godfrey
  • Patent number: 8882461
    Abstract: An airfoil is provided for a gas turbine engine. The airfoil includes a pressure side wall; a suction side wall; an internal cavity defined between the pressure side wall and the suction side wall for receiving cooling air; and a cooling arrangement within the internal cavity. The cooling arrangement includes a first land extending to a first downstream end aft of the pressure side trailing edge, a second land extending to a second downstream end aft of the pressure side trailing edge, the first land and second land defining a first slot, a first divider positioned radially in between the first land and the second land to define a first passageway of the first slot and a second passageway of the first slot, a first pin positioned upstream and indexed to the first passageway, and a second pin positioned upstream and indexed to the second passageway.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: November 11, 2014
    Assignee: Honeywell International Inc.
    Inventors: Mark C. Morris, Jon Kettinger, Yong-Qing Yang, Daniel Cregg Crites
  • Patent number: 8876471
    Abstract: In accordance with an exemplary embodiment, a turbine stator component includes a first endwall; a second endwall; a first stator airfoil coupled between the first and second endwalls; and a second stator airfoil adjacent to the first airfoil and coupled between the first and second endwalls. The first stator airfoil has first crystallographic primary and secondary orientations. The second stator airfoil has second crystallographic primary and secondary orientations, the first crystallographic primary and secondary orientations being different from the second crystallographic primary and secondary orientations.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: November 4, 2014
    Assignee: Honeywell International Inc.
    Inventors: Mark C. Morris, Harry Lester Kington, James Neumann
  • Publication number: 20140271322
    Abstract: In accordance with an exemplary embodiment, a method of forming a dispersion-strengthened aluminum alloy metal includes the steps of providing a dispersion-strengthened aluminum alloy composition in a powdered form, directing a low energy density laser beam at a portion of the powdered alloy composition, and withdrawing the laser beam from the portion of the powdered alloy composition. Subsequent to withdrawal of the laser beam, the portion of the powdered alloy composition cools at a rate greater than or equal to about 106° C. per second, thereby forming the dispersion-strengthened aluminum alloy metal.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Donald G. Godfrey, Richard Bye, Mark C. Morris, Harry Kington
  • Patent number: 8801364
    Abstract: An impeller or axial stage compressor disk backface shroud for use with a gas turbine engine is disclosed. The backface shroud includes, but is not limited to, a substantially funnel shaped body having a surface. The substantially funnel shaped body is configured to be statically mounted to the gas turbine engine substantially coaxially with the impeller or axial stage compressor disk. The surface and a backface of the impeller or axial stage compressor disk form a cavity that guides an airflow portion to a turbine when the substantially funnel shaped body is mounted coaxially with the impeller or axial stage compressor disk and axially spaced apart therefrom. The airflow portion has a tangential velocity and a recessed groove in the surface of the backface shroud is oriented generally transversely to the tangential velocity to at least partially interfere with the airflow portion, thus affecting static pressure in the cavity.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: August 12, 2014
    Assignee: Honeywell International Inc.
    Inventors: Mark C. Morris, Alexander MirzaMoghadam, Khosro Molla Hosseini, Kin Poon, Jeff Howe, Alan G. Tiltman
  • Publication number: 20140199175
    Abstract: In accordance with an exemplary embodiment, a method for manufacturing a component using additive manufacturing techniques includes providing a 3D design model for the component, adding one or more crack resistant features to the 3D design model of the component to produce an enhanced design model, and manufacturing the component using an additive manufacturing technique in accordance with the enhanced design model. The one or more crack resistant features are provided to reduce or eliminate the incidence of cracking in the manufactured component.
    Type: Application
    Filed: January 14, 2013
    Publication date: July 17, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Donald G. Godfrey, Mark C. Morris, Andy Szuromi
  • Patent number: 8728388
    Abstract: A method is provided that includes depositing metal powder over a seed crystal having a predetermined primary orientation, scanning an initial pattern into the metal powder to melt or sinter the deposited metal powder, and re-scanning the initial pattern to re-melt the scanned metal powder and form an initial layer having the predetermined primary orientation. The method further includes depositing additional metal powder over the initial layer, scanning an additional pattern into the additional metal powder to melt or sinter at least a portion of the additional metal powder, re-scanning the additional pattern to re-melt a portion of the initial layer and the scanned deposited additional metal powder to form a successive layer having the predetermined primary orientation, and repeating the steps of depositing additional metal powder, scanning the additional pattern, and re-scanning the additional pattern, until a final shape of the component is achieved.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: May 20, 2014
    Assignee: Honeywell International Inc.
    Inventors: Mark C. Morris, Tom Strangman, Yiping Hu