Patents by Inventor Mark D. Smith

Mark D. Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240141983
    Abstract: Systems are provided for a gearset for a vehicle transmission. In one example, a system includes a shaft comprising one or more lubricant holes oriented radially within the shaft, and one or more gears positioned radially around a central axis of the shaft. The system further includes a ring positioned circumferentially around the shaft. The ring is shaped with a radially extending portion and an axially extending portion, wherein the radially extending portion may direct lubricant flow from the radially oriented lubricant holes toward the axially extending portion, and the axially extending portion directs lubricant flow from the lubricant holes in an axial direction towards the one or more gears. The axially extending portion and radially extending portion form a cut in the ring.
    Type: Application
    Filed: October 31, 2022
    Publication date: May 2, 2024
    Inventors: Mark W. LEBER, Shane T. SMITH, Justin HALL, Langston H. CORN, Michael D. COOK
  • Patent number: 11972680
    Abstract: Table top sanitizer dispenser bottle bases are disclosed herein. An exemplary table top sanitizer dispenser bottle base includes a movable upper housing, the upper moveable housing has a floor with an aperture located therein and a peripheral wall. The top sanitizer dispenser bottle includes a lower stationary housing. The upper movable housing is connected to the lower stationary housing and is configured to move linearly upward and downward with respect to lower stationary. One or more biasing members bias the upper movable housing upward. A switch is included and the upper movable housing has an engagement member or surface for actuating the switch upon downward movement of the upper movable housing. At least one of a visual indicator and an audible indicator are also included. Control circuitry is provided for activating the one or more of a visual indicator and audible indicator when the engagement member actuates the switch.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: April 30, 2024
    Assignee: GOJO Industries, Inc.
    Inventors: Aaron D. Marshall, Mark T. Smith, Paul J. Brown, Aaron R. Reynolds, Joseph S. Kanfer, Shelby Jay Buell, Eugene W. Ray
  • Publication number: 20240115449
    Abstract: An embodiment of a storage device for medical products includes a cabinet defining an enclosure having a plurality of compartments. In addition, the storage device includes a plurality of storage containers, each storage container configured to be inserted into a corresponding one of the plurality of compartments. Further, the storage device includes an actuation assembly including a plurality of arms that are configured to engage the plurality of storage containers so as to secure the plurality of storage containers in the plurality of compartments. Still further, the storage device includes a release mechanism that is configured to simultaneously actuate each of the plurality of arms to release the plurality of storage containers from the plurality of compartments.
    Type: Application
    Filed: December 15, 2023
    Publication date: April 11, 2024
    Inventors: Thomas J. Larkner, David A. Ferrer, Jesse M. Smith, Dennis H. Smith, Adam A. Cloud, Mark D. Lockwood, Mark G. Loeffelholz, James R. Edwards
  • Publication number: 20240120186
    Abstract: Plasma parameters at a surface of a wafer are determined with a plasma hypermodel based on plasma processing conditions. A post-processing profile can be predicted for the surface of the wafer with a feature-scale profile model. Correlations in the plasma hypermodel can be recalibrated if the post-processing profile is outside a convergence criterion of an experimental reference.
    Type: Application
    Filed: November 7, 2022
    Publication date: April 11, 2024
    Inventors: Chad HUARD, Premkumar PANNEERCHELVAM, Shuo HUANG, Mark D. SMITH
  • Publication number: 20240101696
    Abstract: Provided herein are antibodies and methods of use thereof. The antibodies as disclosed herein bind to CD163+ on cells, such as on macrophages. These antibodies can be used in methods of treatment, such as methods of treating cancer.
    Type: Application
    Filed: March 17, 2023
    Publication date: March 28, 2024
    Inventors: Kamal D. Puri, Siddarth Chandrasekaran, Melissa L. Conerly, Peter Probst, Tyrel T. Smith, Mark E. Branum, Randi M. Simmons
  • Publication number: 20240094642
    Abstract: A wafer shape metrology system includes a wafer shape metrology sub-system configured to perform one or more stress-free shape measurements on a first wafer, a second wafer, and a post-bonding pair of the first and second wafers. The wafer shape metrology system includes a controller communicatively coupled to the wafer shape metrology sub-system. The controller is configured to receive stress-free shape measurements from the wafer shape sub-system; predict overlay between one or more features on the first wafer and the second wafer based on the stress-free shape measurements of the first wafer, the second wafer, and the post-bonding pair of the first wafer and the second wafer; and provide a feedback adjustment to one or more process tools based on the predicted overlay. Additionally, feedforward and feedback adjustments may be provided to one or more process tools.
    Type: Application
    Filed: November 27, 2023
    Publication date: March 21, 2024
    Inventors: Franz Zach, Mark D. Smith, Xiaomeng Shen, Jason Saito, David Owen
  • Publication number: 20240094120
    Abstract: This invention relates to the preparation of N-(phosphonomethyl)glycine (“glyphosate”) from N-(phosphonomethyl)iminodiacetic acid (“PMIDA”), and more particularly to methods for control of the conversion of PMIDA, for the identification of reaction end points relating to PMIDA conversion and the preparation of glyphosate products having controlled PMIDA content.
    Type: Application
    Filed: September 22, 2023
    Publication date: March 21, 2024
    Inventors: Leonard AYNARDI, David Z. BECHER, Robert E. BYRD, Eduardo Aurelio CASANOVA, James P. COLEMAN, David R. EATON, Walter K. GAVLICK, Eric A. HAUPFEAR, Oliver LERCH, Carl MUMFORD, Alfredo OBA, Stephen D. PROSCH, Peter E. ROGERS, Bart ROOSE, Mark D. SCAIA, Lowell R. SMITH, Donald D. SOLETA, John WAGENKNECHT
  • Publication number: 20240081843
    Abstract: Systems, techniques, and devices are described that may be used in a minimally invasive bone realignment procedure. In some examples, a method of performing a minimally invasive metatarsal correction procedure involves using a bone preparation guide having a guide surface with a length less than a diameter of a bone to be cut using the guide surface. The clinician can guide a bone preparation instrument along the guide surface and angle the bone preparation instrument beyond one or both ends of the guide surface to cut the end of the underlying bone beyond one or both of the ends.
    Type: Application
    Filed: September 14, 2023
    Publication date: March 14, 2024
    Inventors: Adriaan Kuyler, Paul Dayton, Mark Erik Easley, William T. DeCarbo, Daniel J. Hatch, Jody McAleer, Robert D. Santrock, W. Bret Smith, Sean F. Scanlan, Jason May, Michael Stedham
  • Publication number: 20240082015
    Abstract: An orthopedic implant system can be used to fixate two vertebral bones relative to each other during a surgical procedure. In some configurations, the implant system includes a staple having at least two legs separated by a bridge. The staple can include at least two couplings on either side of the bridge accessible through a top surface of the staple connectable to two corresponding coupling shafts. The coupling shafts can attach through the top surface of the staple without extending below an underside of the staple. The coupling shafts can be used to bias the at least two legs of the staple away from each other for insertion into holes formed into two bones. By attaching the coupling shafts through the top of the staple, the staple can be inserted flush with the two bones before releasing the shafts.
    Type: Application
    Filed: September 14, 2023
    Publication date: March 14, 2024
    Inventors: W. Bret Smith, Madeline Lindemann, Bryan Wilcox, Sean F. Scanlan, Jason May, Adriaan Kuyler, Robert D. Santrock, Mark Erik Easley
  • Publication number: 20240081817
    Abstract: An orthopedic implant system can be used to fixate two bones (e.g., to portions of a single bone) relative to each other during a surgical procedure. In some configurations, the implant system includes a staple having at least two legs separated by a bridge. The staple can include at least two couplings on either side of the bridge accessible through a top surface of the staple connectable to two corresponding coupling shafts. The coupling shafts can attach through the top surface of the staple without extending below an underside of the staple. The coupling shafts can be used to bias the at least two legs of the staple away from each other for insertion into holes formed into two bones. By attaching the coupling shafts through the top of the staple, the staple can be inserted flush with the two bones before releasing the shafts.
    Type: Application
    Filed: September 14, 2023
    Publication date: March 14, 2024
    Inventors: W. Bret Smith, Madeline Lindemann, Bryan Wilcox, Sean F. Scanlan, Jason May, Adriaan Kuyler, Robert D. Santrock, Mark Erik Easley
  • Publication number: 20240081816
    Abstract: An orthopedic implant system can be used to fixate two bones (e.g., to portions of a single bone) relative to each other during a surgical procedure. In some configurations, the implant system includes a staple having at least two legs separated by a bridge. The staple can include at least two couplings on either side of the bridge accessible through a top surface of the staple connectable to two corresponding coupling shafts. The coupling shafts can attach through the top surface of the staple without extending below an underside of the staple. The coupling shafts can be used to bias the at least two legs of the staple away from each other for insertion into holes formed into two bones. By attaching the coupling shafts through the top of the staple, the staple can be inserted flush with the two bones before releasing the shafts.
    Type: Application
    Filed: September 14, 2023
    Publication date: March 14, 2024
    Inventors: W. Bret Smith, Madeline Lindemann, Bryan Wilcox, Sean F. Scanlan, Jason May, Adriaan Kuyler, Robert D. Santrock, Mark Erik Easley
  • Publication number: 20240053721
    Abstract: A system includes a wafer shape metrology sub-system configured to perform one or more shape measurements on post-bonding pairs of wafers. The system includes a controller communicatively coupled to the wafer shape metrology sub-system. The controller receives a set of measured distortion patterns. The controller applies a bonder control model to the measured distortion patterns to determine a set of overlay distortion signatures. The bonder control model is made up of a set of orthogonal wafer signatures that represent the achievable adjustments. The controller determines whether the set of overlay distortion signatures associated with the measured distortion patterns are outside tolerance limits provides one or more feedback adjustments to the bonder tool.
    Type: Application
    Filed: October 9, 2023
    Publication date: February 15, 2024
    Inventors: Franz Zach, Mark D. Smith, Roel Gronheid
  • Patent number: 11829077
    Abstract: A wafer shape metrology system includes a wafer shape metrology sub-system configured to perform one or more stress-free shape measurements on a first wafer, a second wafer, and a post-bonding pair of the first and second wafers. The wafer shape metrology system includes a controller communicatively coupled to the wafer shape metrology sub-system. The controller is configured to receive stress-free shape measurements from the wafer shape sub-system; predict overlay between one or more features on the first wafer and the second wafer based on the stress-free shape measurements of the first wafer, the second wafer, and the post-bonding pair of the first wafer and the second wafer; and provide a feedback adjustment to one or more process tools based on the predicted overlay. Additionally, feedforward and feedback adjustments may be provided to one or more process tools.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: November 28, 2023
    Assignee: KLA Corporation
    Inventors: Franz Zach, Mark D. Smith, Xiaomeng Shen, Jason Saito, David Owen
  • Patent number: 11782411
    Abstract: A system includes a wafer shape metrology sub-system configured to perform one or more shape measurements on post-bonding pairs of wafers. The system includes a controller communicatively coupled to the wafer shape metrology sub-system. The controller receives a set of measured distortion patterns. The controller applies a bonder control model to the measured distortion patterns to determine a set of overlay distortion signatures. The bonder control model is made up of a set of orthogonal wafer signatures that represent the achievable adjustments. The controller determines whether the set of overlay distortion signatures associated with the measured distortion patterns are outside tolerance limits provides one or more feedback adjustments to the bonder tool.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: October 10, 2023
    Assignee: KLA Corporation
    Inventors: Franz Zach, Mark D. Smith, Roel Gronheid
  • Patent number: 11682570
    Abstract: A controller is configured to perform at least a first characterization process prior to at least one discrete backside film deposition process on a semiconductor wafer; perform at least an additional characterization process following the at least one discrete backside film deposition process; determine at least one of a film force or one or more in-plane displacements for at least one discrete backside film deposited on the semiconductor wafer via the at least one discrete backside film deposition process based on the at least the first characterization process and the at least the additional characterization process; and provide at least one of the film force or the one or more in-plane displacements to at least one process tool via at least one of a feed forward loop or a feedback loop to improve performance of one or more fabrication processes.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: June 20, 2023
    Assignee: KLA Corporation
    Inventors: Pradeep Vukkadala, Mark D. Smith, Ady Levy, Prasanna Dighe, Dieter Mueller
  • Publication number: 20230032406
    Abstract: A wafer shape metrology system includes a wafer shape metrology sub-system configured to perform one or more stress-free shape measurements on a bonded pair of wafers, where the bonded pair of wafers are bonded with a bonding tool. The wafer shape metrology sub-system includes a controller communicatively coupled to the wafer shape metrology sub-system. The controller is configured to receive stress-free shape measurements from the wafer shape sub-system; convert the stress-free shape measurements into an overlay distortion pattern; detect one or more localized deviations in the bonded pair of wafers in order to identify one or more contaminant particles on the bonding tool; and report the one or more localized deviations in the bonded pair of wafers.
    Type: Application
    Filed: January 31, 2022
    Publication date: February 2, 2023
    Inventors: Franz Zach, Mark D. Smith, Roel Gronheid
  • Publication number: 20230035201
    Abstract: A system includes a wafer shape metrology sub-system configured to perform one or more shape measurements on post-bonding pairs of wafers. The system includes a controller communicatively coupled to the wafer shape metrology sub-system. The controller receives a set of measured distortion patterns. The controller applies a bonder control model to the measured distortion patterns to determine a set of overlay distortion signatures. The bonder control model is made up of a set of orthogonal wafer signatures that represent the achievable adjustments. The controller determines whether the set of overlay distortion signatures associated with the measured distortion patterns are outside tolerance limits provides one or more feedback adjustments to the bonder tool.
    Type: Application
    Filed: January 31, 2022
    Publication date: February 2, 2023
    Inventors: Franz Zach, Mark D. Smith, Roel Gronheid
  • Publication number: 20230030116
    Abstract: A wafer shape metrology system includes a wafer shape metrology sub-system configured to perform stress-free shape measurements on an active wafer, a carrier wafer, and a bonded device wafer. The active wafer includes functioning logic circuitry and the carrier wafer is electrically passive. The wafer shape metrology system includes a controller communicatively coupled to the wafer shape metrology sub-system. The controller is configured to receive stress-free shape measurements; determine overlay distortion between features on the active wafer and the carrier wafer; and convert the overlay distortion to a feed-forward correction for one or more lithographic scanners. The controller is also configured to determine a control range for a bonder or lithography scanner; predict an overlay distortion pattern; calculate an optimal control signature based on a minimal achievable overlay; and provide a feed-forward correction to the bonder or lithography scanner based on the calculated optimal control signature.
    Type: Application
    Filed: January 31, 2022
    Publication date: February 2, 2023
    Inventors: Franz Zach, Mark D. Smith, Roel Gronheid
  • Publication number: 20220187718
    Abstract: A wafer shape metrology system includes a wafer shape metrology sub-system configured to perform one or more stress-free shape measurements on a first wafer, a second wafer, and a post-bonding pair of the first and second wafers. The wafer shape metrology system includes a controller communicatively coupled to the wafer shape metrology sub-system. The controller is configured to receive stress-free shape measurements from the wafer shape sub-system; predict overlay between one or more features on the first wafer and the second wafer based on the stress-free shape measurements of the first wafer, the second wafer, and the post-bonding pair of the first wafer and the second wafer; and provide a feedback adjustment to one or more process tools based on the predicted overlay. Additionally, feedforward and feedback adjustments may be provided to one or more process tools.
    Type: Application
    Filed: January 28, 2021
    Publication date: June 16, 2022
    Applicant: KLA Corporation
    Inventors: Franz Zach, Mark D. Smith, Xiaomeng Shen, Jason Saito, David Owen
  • Patent number: 11221561
    Abstract: An overlay control system is disclosed. In embodiments, the system may include a controller configured to: acquire a set of feedback overlay measurements based on a plan of record (POR) sampling map on a second layer of samples of at least one previous lot of samples; generate a reference wafer overlay map based on the set of feedback overlay measurements; acquire a set of feedforward overlay measurements based on a feedforward sampling map on a first layer of a set of samples of a current lot of samples; generate a set of artificial overlay vector maps for the set of samples of the current lot of samples based on the set of feedforward overlay measurements; and cause a lithography tool to fabricate a second layer of samples of the current lot of samples based on the reference wafer overlay map and the set of artificial overlay vector maps.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: January 11, 2022
    Assignee: KLA Corporation
    Inventors: Onur Nihat Demirer, Fatima Anis, Mark D. Smith