Patents by Inventor Mark E. Froggatt

Mark E. Froggatt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220404144
    Abstract: A multi-core fiber includes multiple optical cores, and for each different core of a set of different cores of the multiple optical cores, a total change in optical length is detected. The total change in optical length represents an accumulation of all changes in optical length for multiple segments of that different core up to a point on the multi-core fiber. A difference is determined between the total changes in optical length for cores of the set of different cores. A twist parameter and/or a bend angle associated with the multi-core fiber at the point on the multi-core fiber is/are determined based on the difference.
    Type: Application
    Filed: August 24, 2022
    Publication date: December 22, 2022
    Inventors: Mark E. Froggatt, Justin W. Klein, Dawn K. Gifford, Stephen T. Kreger
  • Publication number: 20220373365
    Abstract: Described are optical fibers, e.g., for use in stress-sensing or shape-sensing applications, that use overlapping grating configurations with chirped gratings to facilitate strain delay registration. In accordance with various embodiments, a fiber core may, for instance, have two overlapping sets of chirped gratings that differ in the direction of the chirp between the first and second sets, or a set of chirped gratings overlapping with a single-frequency grating. Also described are strain sensing systems and associated computational methods employing optical fibers with overlapping gratings.
    Type: Application
    Filed: July 29, 2022
    Publication date: November 24, 2022
    Inventors: Mark E. Froggatt, Brooks Childers
  • Patent number: 11506519
    Abstract: Described are optical fibers, e.g., for use in stress-sensing or shape-sensing applications, that use overlapping grating configurations with chirped gratings to facilitate strain delay registration. In accordance with various embodiments, a fiber core may, for instance, have two overlapping sets of chirped gratings that differ in the direction of the chirp between the first and second sets, or a set of chirped gratings overlapping with a single-frequency grating. Also described are strain sensing systems and associated computational methods employing optical fibers with overlapping gratings.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: November 22, 2022
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Mark E. Froggatt, Brooks Childers
  • Patent number: 11499818
    Abstract: Example embodiments include an optical assembly for an optical interrogation system having a single core or a multicore sensing fiber, a measurement fiber to couple light into the sensing fiber, and a reference fiber arranged with the measurement fiber as part of an optical interferometer. A beam splitter combines light from the sensing fiber and with light from the reference fiber. A polarization beam splitting prism separates the combined light into first polarized light and second polarized light that is orthogonal to the first polarized light. The optical assembly can substantially reduce the size, complexity, or cost associated with the traditional optical components in an optical interrogation system that it replaces. Other example optical assemblies are described. Embodiments describe optical interrogation systems using the example optical assemblies.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: November 15, 2022
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Mark E. Froggatt, Eric E. Sanborn, Alexander K. Sang
  • Patent number: 11473902
    Abstract: A multi-core fiber includes multiple optical cores, and for each different core of a set of different cores of the multiple optical cores, a total change in optical length is detected. The total change in optical length represents an accumulation of all changes in optical length for multiple segments of that different core up to a point on the multi-core fiber. A difference is determined between the total changes in optical length for cores of the set of different cores. A twist parameter and/or a bend angle associated with the multi-core fiber at the point on the multi-core fiber is/are determined based on the difference.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: October 18, 2022
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Mark E. Froggatt, Justin W. Klein, Dawn K. Gifford, Stephen T. Kreger
  • Patent number: 11473941
    Abstract: Example embodiments include an optical interrogation system with a sensing fiber having a single core, the single core having multiple light propagating modes. Interferometric apparatus probes the single core multimode sensing fiber over a range of predetermined wavelengths and detects measurement interferometric data associated with the multiple light propagating modes of the single core for each predetermined wavelength in the range. Data processing circuitry processes the measurement interferometric data associated with the multiple light propagating modes of the single core to determine one or more shape-sensing parameters of the sensing fiber from which the shape of the fiber in three dimensions can be determined.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: October 18, 2022
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Mark E. Froggatt, Dawn K. Gifford, Eric E. Sanborn, Alexander K. Sang
  • Patent number: 11467006
    Abstract: Described are optical fibers, e.g., for use in stress-sensing or shape-sensing applications, that use overlapping grating configurations with chirped gratings to facilitate strain delay registration. In accordance with various embodiments, a fiber core may, for instance, have two overlapping sets of chirped gratings that differ in the direction of the chirp between the first and second sets, or a set of chirped gratings overlapping with a single-frequency grating. Also described are strain sensing systems and associated computational methods employing optical fibers with overlapping gratings.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: October 11, 2022
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Mark E. Froggatt, Brooks Childers
  • Patent number: 11324393
    Abstract: Where a flexible tool includes a tool body with a flexible portion, a distal end and a first optical fiber within the flexible portion, shape sensing can be achieved with increased accuracy by inserting or otherwise including a second optical fiber within the flexible portion. The increased accuracy can be achieved when the second optical fiber has a diameter larger than that of the first optical fiber. Once the shape of the flexible tool has been determined using at least the second optical fiber, the first optical fiber can be used for subsequent shape sensing. This may be particularly applicable where the tool includes an instrument such as an optical imaging device inserted in a channel of the tool, where not all of the width of the channel is occupied by functional components behind the operable end of the instrument.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: May 10, 2022
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Mark E. Froggatt, Eric Sanborn
  • Patent number: 11313674
    Abstract: An optical force sensor along with an optical processing apparatus and method are disclosed. The optical force sensor includes an optical fiber, a core included in the optical fiber, an instrument including the optical fiber, the instrument having a distal region, and a tubular structure encasing an end of the optical fiber and secured to the first conduit at the distal region of the instrument. When an optical interferometric system is coupled to the optical fiber, it processes reflected light from a portion of the core included within the tubular structure that does not include Bragg gratings to produce a measurement of a force present at the distal region of the instrument.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: April 26, 2022
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Dawn K. Gifford, Federico Barbagli, Samuel Chang, Anoop B. Kowshik, Oliver Wagner, Michael Paris, Mark E. Froggatt
  • Publication number: 20220011094
    Abstract: Example embodiments add an optical amplifier to an multi-channel, continuously swept OFDR measurement system, adjust amplified swept laser output power between rising and falling laser sweeps, and/or utilize portions of a laser sweep in which OFDR measurements are not typically performed to enhance the integrity of the OFDR measurement system, improve the performance and quality of OFDR measurements, and perform additional measurements and tests.
    Type: Application
    Filed: September 27, 2021
    Publication date: January 13, 2022
    Inventors: Kevin M. Marsden, Mark E. Froggatt, Matthew S. Wolfe
  • Patent number: 11193751
    Abstract: Interferometric measurement signals are detected by a single optical interferometric interrogator for a length of a sensing light guide and an interferometric measurement data set corresponding to the interferometric measurement signals is generated. The interferometric measurement data set is transformed into a spectral domain to produce a transformed interferometric measurement data set. The transformed interferometric measurement data set is compared to a baseline interferometric data set to identify a time-varying signal corresponding to a time-varying disturbance. The baseline interferometric data set is representative of the sensing light guide not being subjected to the time-varying disturbance. A compensating signal is determined from the time-varying signal and used to compensate at least a portion of the interferometric measurement data set for the time-varying disturbance as part of producing a measurement of the parameter.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: December 7, 2021
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Mark E. Froggatt, Alexander K. Sang, Dawn K. Gifford, Justin W. Klein
  • Patent number: 11162782
    Abstract: Example embodiments add an optical amplifier to an multi-channel, continuously swept OFDR measurement system, adjust amplified swept laser output power between rising and falling laser sweeps, and/or utilize portions of a laser sweep in which OFDR measurements are not typically performed to enhance the integrity of the OFDR measurement system, improve the performance and quality of OFDR measurements, and perform additional measurements and tests.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: November 2, 2021
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Kevin M. Marsden, Mark E. Froggatt, Matthew S. Wolfe
  • Publication number: 20210254967
    Abstract: Example embodiments include an optical assembly for an optical interrogation system having a single core or a multicore sensing fiber, a measurement fiber to couple light into the sensing fiber, and a reference fiber arranged with the measurement fiber as part of an optical interferometer. A beam splitter combines light from the sensing fiber and with light from the reference fiber. A polarization beam splitting prism separates the combined light into first polarized light and second polarized light that is orthogonal to the first polarized light. The optical assembly can substantially reduce the size, complexity, or cost associated with the traditional optical components in an optical interrogation system that it replaces. Other example optical assemblies are described. Embodiments describe optical interrogation systems using the example optical assemblies.
    Type: Application
    Filed: March 2, 2021
    Publication date: August 19, 2021
    Inventors: Mark E. Froggatt, Eric E. Sanborn, Alexander K. Sang
  • Publication number: 20210231465
    Abstract: Described are optical fibers, e.g., for use in stress-sensing or shape-sensing applications, that use overlapping grating configurations with chirped gratings to facilitate strain delay registration. In accordance with various embodiments, a fiber core may, for instance, have two overlapping sets of chirped gratings that differ in the direction of the chirp between the first and second sets, or a set of chirped gratings overlapping with a single-frequency grating. Also described are strain sensing systems and associated computational methods employing optical fibers with overlapping gratings.
    Type: Application
    Filed: June 4, 2019
    Publication date: July 29, 2021
    Inventors: Mark E. Froggatt, Brooks Childers
  • Publication number: 20210231432
    Abstract: An optical force sensor along with an optical processing apparatus and method are disclosed. The optical force sensor includes an optical fiber, a core included in the optical fiber, an instrument including the optical fiber, the instrument having a distal region, and a tubular structure encasing an end of the optical fiber and secured to the first conduit at the distal region of the instrument. When an optical interferometric system is coupled to the optical fiber, it processes reflected light from a portion of the core included within the tubular structure that does not include Bragg gratings to produce a measurement of a force present at the distal region of the instrument.
    Type: Application
    Filed: December 8, 2020
    Publication date: July 29, 2021
    Inventors: Dawn K. Gifford, Federico Barbagli, Samuel Chang, Anoop B. Kowshik, Oliver Wagner, Michael Paris, Mark E. Froggatt
  • Publication number: 20210199884
    Abstract: An optical fiber includes multiple optical cores configured in the fiber including a set of primary cores and an auxiliary core. An interferometric measurement system uses measurements from the multiple primary cores to predict a response from the auxiliary core. The predicted auxiliary core response is compared with the actual auxiliary core response to determine if they differ by more than a predetermined amount, in which case the measurements from the multiple primary cores may be deemed unreliable.
    Type: Application
    Filed: March 16, 2021
    Publication date: July 1, 2021
    Inventors: Mark E. Froggatt, Dawn K. Gifford, Jeffrey T. LaCroix, Patrick Roye, Alexander K. Sang
  • Publication number: 20210187752
    Abstract: A fiber includes M primary cores and N redundant cores, where M an integer is greater than two and N is an integer greater than one. Interferometric circuitry detects interferometric pattern data associated with the M primary cores and the N redundant cores when the optical fiber is placed into a sensing position. Data processing circuitry calculates a primary core fiber bend value for the M primary cores and a redundant core fiber bend value for the N redundant cores based on a predetermined geometry of the M primary cores and the N redundant cores in the fiber and detected interferometric pattern data associated with the M primary cores and the N redundant cores. The primary core fiber bend value and the redundant core fiber bend value are compared in a comparison. The detected data for the M primary cores is determined reliable or unreliable based on the comparison. A signal is generated in response to an unreliable determination.
    Type: Application
    Filed: February 24, 2021
    Publication date: June 24, 2021
    Inventors: Patrick Roye, Mark E. Froggatt, Dawn K. Gifford
  • Patent number: 11035699
    Abstract: Example embodiments include an optical interrogation system with a sensing fiber having a single core, the single core having multiple light propagating modes. Interferometric apparatus probes the single core multimode sensing fiber over a range of predetermined wavelengths and detects measurement interferometric data associated with the multiple light propagating modes of the single core for each predetermined wavelength in the range. Data processing circuitry processes the measurement interferometric data associated with the multiple light propagating modes of the single core to determine one or more shape-sensing parameters of the sensing fiber from which the shape of the fiber in three dimensions can be determined.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: June 15, 2021
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Mark E. Froggatt, Dawn K. Gifford, Eric E. Sanborn, Alexander K. Sang
  • Publication number: 20210172768
    Abstract: Example embodiments include an optical interrogation system with a sensing fiber having a single core, the single core having multiple light propagating modes. Interferometric apparatus probes the single core multimode sensing fiber over a range of predetermined wavelengths and detects measurement interferometric data associated with the multiple light propagating modes of the single core for each predetermined wavelength in the range. Data processing circuitry processes the measurement interferometric data associated with the multiple light propagating modes of the single core to determine one or more shape-sensing parameters of the sensing fiber from which the shape of the fiber in three dimensions can be determined.
    Type: Application
    Filed: February 17, 2021
    Publication date: June 10, 2021
    Inventors: Mark E. Froggatt, Dawn K. Gifford, Eric E. Sanborn, Alexander K. Sang
  • Patent number: 11016316
    Abstract: Optical polarization control devices that include two pairs of squeezing plates oriented in mutually perpendicular directions are described. Compressive forces exerted by the two pairs of plates onto an optical fiber can be configured for low polarization mode dispersion. Various methods and systems in which the polarization control devices can be employed are also described.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: May 25, 2021
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Mark E. Froggatt, Eric E. Sanborn