Patents by Inventor Mark J. Lim

Mark J. Lim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250067751
    Abstract: The field of this invention relates to immunohistochemistry (IHC) and in situ hybridization (ISH) for the targeted detection and mapping of biomolecules (e.g., proteins and miRNAs) in tissues or cells for example, for research use and for clinical use such by pathologists (e.g., biomarker analyses of a resected tumor or tumor biopsy). In particular, the use of mass spectrometric imaging (MSI) as a mode to detect and map the biomolecules in tissues or cells for example. More specifically, the field of this invention relates to photocleavable mass-tag reagents which are attached to probes such as antibodies and nucleic acids and used to achieve multiplex immunohistochemistry and in situ hybridization, with MSI as the mode of detection/readout. Probe types other than antibodies and nucleic acids are also covered in the field of invention, including but not limited to carbohydrate-binding proteins (e.g., lectins), receptors and ligands.
    Type: Application
    Filed: November 13, 2024
    Publication date: February 27, 2025
    Inventors: Mark J. Lim, Gargey Yagnik, Kenneth J. Rothschild
  • Patent number: 12235277
    Abstract: The field of this invention relates to immunohistochemistry (IHC) and in situ hybridization (ISH) for the targeted detection and mapping of biomolecules (e.g., proteins and miRNAs) in tissues or cells for example, for research use and for clinical use such by pathologists (e.g., biomarker analyses of a resected tumor or tumor biopsy). In particular, the use of mass spectrometric imaging (MSI) as a mode to detect and map the biomolecules in tissues or cells for example. More specifically, the field of this invention relates to photocleavable mass-tag reagents which are attached to probes such as antibodies and nucleic acids and used to achieve multiplex immunohistochemistry and in situ hybridization, with MSI as the mode of detection/readout. Probe types other than antibodies and nucleic acids are also covered in the field of invention, including but not limited to carbohydrate-binding proteins (e.g., lectins), receptors and ligands.
    Type: Grant
    Filed: February 28, 2024
    Date of Patent: February 25, 2025
    Assignee: AmberGen, Inc.
    Inventors: Mark J. Lim, Gargey Yagnik, Kenneth J. Rothschild
  • Patent number: 12181482
    Abstract: The field of this invention relates to immunohistochemistry (IHC) and in situ hybridization (ISH) for the targeted detection and mapping of biomolecules (e.g., proteins and miRNAs) in tissues or cells for example, for research use and for clinical use such by pathologists (e.g., biomarker analyses of a resected tumor or tumor biopsy). In particular, the use of mass spectrometric imaging (MSI) as a mode to detect and map the biomolecules in tissues or cells for example. The field of this invention relates to photocleavable mass-tag reagents which are attached to probes such as antibodies and nucleic acids and used to achieve multiplex immunohistochemistry and in situ hybridization, with MSI as the mode of detection/readout, and also encompasses multi-omic MSI procedures, where MSI of photocleavable mass-tag probes is combined with other modes of MSI.
    Type: Grant
    Filed: June 21, 2023
    Date of Patent: December 31, 2024
    Assignee: AmberGen, Inc.
    Inventors: Mark J. Lim, Gargey Yagnik, Kenneth J. Rothschild
  • Patent number: 12181481
    Abstract: The field of this invention relates to immunohistochemistry (IHC) and in situ hybridization (ISH) for the targeted detection and mapping of biomolecules (e.g., proteins and miRNAs) in tissues or cells for example, for research use and for clinical use such by pathologists (e.g., biomarker analyses of a resected tumor or tumor biopsy). In particular, the use of mass spectrometric imaging (MSI) as a mode to detect and map the biomolecules in tissues or cells for example. More specifically, the field of this invention relates to photocleavable mass-tag reagents which are attached to probes such as antibodies and nucleic acids and used to achieve multiplex immunohistochemistry and in situ hybridization, with MSI as the mode of detection/readout. Probe types other than antibodies and nucleic acids are also covered in the field of invention, including but not limited to carbohydrate-binding proteins (e.g., lectins), receptors and ligands.
    Type: Grant
    Filed: August 11, 2021
    Date of Patent: December 31, 2024
    Assignee: AmberGen, Inc.
    Inventors: Mark J. Lim, Gargey Yagnik, Kenneth J. Rothschild
  • Publication number: 20240319205
    Abstract: The field of this invention relates to immunohistochemistry (IHC) and in situ hybridization (ISH) for the targeted detection and mapping of biomolecules (e.g., proteins and miRNAs) in tissues or cells for example, for research use and for clinical use such by pathologists (e.g., biomarker analyses of a resected tumor or tumor biopsy). In particular, the use of mass spectrometric imaging (MSI) as a mode to detect and map the biomolecules in tissues or cells for example. More specifically, the field of this invention relates to photocleavable mass-tag reagents which are attached to probes such as antibodies and nucleic acids and used to achieve multiplex immunohistochemistry and in situ hybridization, with MSI as the mode of detection/readout. Probe types other than antibodies and nucleic acids are also covered in the field of invention, including but not limited to carbohydrate-binding proteins (e.g., lectins), receptors and ligands.
    Type: Application
    Filed: May 30, 2024
    Publication date: September 26, 2024
    Inventors: Mark J. Lim, Gargey Yagnik, Kenneth J. Rothschild
  • Patent number: 12078639
    Abstract: The field of this invention relates to immunohistochemistry (IHC) and in situ hybridization (ISH) for the targeted detection and mapping of biomolecules (e.g., proteins and miRNAs) in tissues or cells for example, for research use and for clinical use such by pathologists (e.g., biomarker analyses of a resected tumor or tumor biopsy). In particular, the use of mass spectrometric imaging (MSI) as a mode to detect and map the biomolecules in tissues or cells for example. More specifically, the field of this invention relates to photocleavable mass-tag reagents which are attached to probes such as antibodies and nucleic acids and used to achieve multiplex immunohistochemistry and in situ hybridization, with MSI as the mode of detection/readout. Probe types other than antibodies and nucleic acids are also covered in the field of invention, including but not limited to carbohydrate-binding proteins (e.g., lectins), receptors and ligands.
    Type: Grant
    Filed: July 13, 2022
    Date of Patent: September 3, 2024
    Assignee: AmberGen, INC.
    Inventors: Mark J. Lim, Gargey Yagnik, Kenneth J. Rothschild
  • Publication number: 20240264167
    Abstract: The field of this invention relates to immunohistochemistry (IHC) and in situ hybridization (ISH) for the targeted detection and mapping of biomolecules (e.g., proteins and miRNAs) in tissues or cells for example, for research use and for clinical use such by pathologists (e.g., biomarker analyses of a resected tumor or tumor biopsy). In particular, the use of mass spectrometric imaging (MSI) as a mode to detect and map the biomolecules in tissues or cells for example. More specifically, the field of this invention relates to photocleavable mass-tag reagents which are attached to probes such as antibodies and nucleic acids and used to achieve multiplex immunohistochemistry and in situ hybridization, with MSI as the mode of detection/readout. Probe types other than antibodies and nucleic acids are also covered in the field of invention, including but not limited to carbohydrate-binding proteins (e.g., lectins), receptors and ligands.
    Type: Application
    Filed: February 28, 2024
    Publication date: August 8, 2024
    Inventors: Mark J. Lim, Gargey Yagnik, Kenneth J. Rothschild
  • Patent number: 12013392
    Abstract: Methods for proteomic screening on random protein-bead arrays by mass spec is described. Photocleavable mass tags are utilized to code a protein library (bait molecules) displayed on beads randomly arrayed in an array substrate. A library of probes (prey) can be mixed with the protein-bead array to query the array. Because mass spec can detect multiple mass tags, it is possible to rapidly identify all of the interactions resulting from this mixing.
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: June 18, 2024
    Assignee: AMBERGEN, INC.
    Inventors: Mark J Lim, Vladislav B Bergo, Kenneth J Rothschild
  • Publication number: 20240159749
    Abstract: Methods and compositions are described for the diagnosis of primary biliary cirrhosis. Novel autoantigens are described for use in assays which employ test samples from individuals.
    Type: Application
    Filed: November 28, 2023
    Publication date: May 16, 2024
    Applicants: AMBERGEN, INC., THE GENERAL HOSPITAL CORPORATION
    Inventors: MARK J. LIM, HEATHER P. OSTENDORFF, KENNETH J. ROTHSCHILD, DONALD B. BLOCH
  • Patent number: 11940447
    Abstract: The field of this invention relates to immunohistochemistry (IHC) and in situ hybridization (ISH) for the targeted detection and mapping of biomolecules (e.g., proteins and miRNAs) in tissues or cells for example, for research use and for clinical use such by pathologists (e.g., biomarker analyses of a resected tumor or tumor biopsy). In particular, the use of mass spectrometric imaging (MSI) as a mode to detect and map the biomolecules in tissues or cells for example. More specifically, the field of this invention relates to photocleavable mass-tag reagents which are attached to probes such as antibodies and nucleic acids and used to achieve multiplex immunohistochemistry and in situ hybridization, with MSI as the mode of detection/readout. Probe types other than antibodies and nucleic acids are also covered in the field of invention, including but not limited to carbohydrate-binding proteins (e.g., lectins), receptors and ligands.
    Type: Grant
    Filed: July 12, 2022
    Date of Patent: March 26, 2024
    Assignee: AMBERGEN, INC.
    Inventors: Mark J. Lim, Gargey Yagnik, Kenneth J. Rothschild
  • Publication number: 20240077494
    Abstract: The field of this invention relates to immunohistochemistry (IHC) and in situ hybridization (ISH) for the targeted detection and mapping of biomolecules (e.g., proteins and miRNAs) in tissues or cells for example, for research use and for clinical use such by pathologists (e.g., biomarker analyses of a resected tumor or tumor biopsy). In particular, the use of mass spectrometric imaging (MSI) as a mode to detect and map the biomolecules in tissues or cells for example. More specifically, the field of this invention relates to photocleavable mass-tag reagents which are attached to probes such as antibodies and nucleic acids and used to achieve multiplex immunohistochemistry and in situ hybridization, with MSI as the mode of detection/readout. Probe types other than antibodies and nucleic acids are also covered in the field of invention, including but not limited to carbohydrate-binding proteins (e.g., lectins), receptors and ligands.
    Type: Application
    Filed: October 26, 2023
    Publication date: March 7, 2024
    Inventors: Mark J. Lim, Gargey Yagnik, Kenneth J. Rothschild
  • Publication number: 20240069013
    Abstract: Methods for proteomic screening on random protein-bead arrays by mass spec is described. Photocleavable mass tags are utilized to code a protein library (bait molecules) displayed on beads randomly arrayed in an array substrate. A library of probes (prey) can be mixed with the protein-bead array to query the array. Because mass spec can detect multiple mass tags, it is possible to rapidly identify all of the interactions resulting from this mixing.
    Type: Application
    Filed: November 2, 2023
    Publication date: February 29, 2024
    Inventors: Mark J. Lim, Vladislav B. Bergo, Kenneth J. Rothschild
  • Patent number: 11906527
    Abstract: The field of this invention relates to immunohistochemistry (IHC) and in situ hybridization (ISH) for the targeted detection and mapping of biomolecules (e.g., proteins and miRNAs) in tissues or cells for example, for research use and for clinical use such by pathologists (e.g., biomarker analyses of a resected tumor or tumor biopsy). In particular, the use of mass spectrometric imaging (MSI) as a mode to detect and map the biomolecules in tissues or cells for example. More specifically, the field of this invention relates to photocleavable mass-tag reagents which are attached to probes such as antibodies and nucleic acids and used to achieve multiplex immunohistochemistry and in situ hybridization, with MSI as the mode of detection/readout. Probe types other than antibodies and nucleic acids are also covered in the field of invention, including but not limited to carbohydrate-binding proteins (e.g., lectins), receptors and ligands.
    Type: Grant
    Filed: August 11, 2021
    Date of Patent: February 20, 2024
    Assignee: AMBERGEN, INC.
    Inventors: Mark J. Lim, Gargey Yagnik, Kenneth J. Rothschild
  • Patent number: 11885802
    Abstract: Methods and compositions are described for the diagnosis of primary biliary cirrhosis. Novel autoantigens are described for use in assays which employ test samples from individuals.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: January 30, 2024
    Assignees: AMBERGEN, INC., MASSACHUSETTS GENERAL HOSPITAL
    Inventors: Mark J. Lim, Heather P. Ostendorff, Kenneth J. Rothschild, Donald B. Bloch
  • Patent number: 11846634
    Abstract: Methods for proteomic screening on random protein-bead arrays by mass spec is described. Photocleavable mass tags are utilized to code a protein library (bait molecules) displayed on beads randomly arrayed in an array substrate. A library of probes (prey) can be mixed with the protein-bead array to query the array. Because mass spec can detect multiple mass tags, it is possible to rapidly identify all of the interactions resulting from this mixing.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: December 19, 2023
    Assignee: AMBERGEN, INC.
    Inventors: Mark J Lim, Vladislav B Bergo, Kenneth J Rothschild
  • Publication number: 20230349917
    Abstract: The field of this invention relates to immunohistochemistry (IHC) and in situ hybridization (ISH) for the targeted detection and mapping of biomolecules (e.g., proteins and miRNAs) in tissues or cells for example, for research use and for clinical use such by pathologists (e.g., biomarker analyses of a resected tumor or tumor biopsy). In particular, the use of mass spectrometric imaging (MSI) as a mode to detect and map the biomolecules in tissues or cells for example. More specifically, the field of this invention relates to photocleavable mass-tag reagents which are attached to probes such as antibodies and nucleic acids and used to achieve multiplex immunohistochemistry and in situ hybridization, with MSI as the mode of detection/readout. Probe types other than antibodies and nucleic acids are also covered in the field of invention, including but not limited to carbohydrate-binding proteins (e.g., lectins), receptors and ligands.
    Type: Application
    Filed: June 21, 2023
    Publication date: November 2, 2023
    Inventors: Mark J. Lim, Gargey Yagnik, Kenneth J. Rothschild
  • Patent number: 11789027
    Abstract: The field of this invention relates to immunohistochemistry (IHC) and in situ hybridization (ISH) for the targeted detection and mapping of biomolecules (e.g., proteins and miRNAs) in tissues or cells for example, for research use and for clinical use such by pathologists (e.g., biomarker analyses of a resected tumor or tumor biopsy). In particular, the use of mass spectrometric imaging (MSI) as a mode to detect and map the biomolecules in tissues or cells for example. The field of this invention relates to photocleavable mass-tag reagents which are attached to probes such as antibodies and nucleic acids and used to achieve multiplex immunohistochemistry and in situ hybridization, with MSI as the mode of detection/readout, and also encompasses multi-omic MSI procedures, where MSI of photocleavable mass-tag probes is combined with other modes of MSI.
    Type: Grant
    Filed: August 11, 2021
    Date of Patent: October 17, 2023
    Assignee: AmberGen, Inc.
    Inventors: Mark J. Lim, Gargey Yagnik, Kenneth J. Rothschild
  • Patent number: 11782056
    Abstract: Methods for proteomic screening on random protein-bead arrays by mass spec is described. Photocleavable mass tags are utilized to code a protein library (bait molecules) displayed on beads randomly arrayed in an array substrate. A library of probes (prey) can be mixed with the protein-bead array to query the array. Because mass spec can detect multiple mass tags, it is possible to rapidly identify all of the interactions resulting from this mixing.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: October 10, 2023
    Assignee: AmberGen, Inc.
    Inventors: Mark J Lim, Vladislav B Bergo, Kenneth J Rothschild
  • Publication number: 20220365097
    Abstract: The field of this invention relates to immunohistochemistry (IHC) and in situ hybridization (ISH) for the targeted detection and mapping of biomolecules (e.g., proteins and miRNAs) in tissues or cells for example, for research use and for clinical use such by pathologists (e.g., biomarker analyses of a resected tumor or tumor biopsy). In particular, the use of mass spectrometric imaging (MSI) as a mode to detect and map the biomolecules in tissues or cells for example. More specifically, the field of this invention relates to photocleavable mass-tag reagents which are attached to probes such as antibodies and nucleic acids and used to achieve multiplex immunohistochemistry and in situ hybridization, with MSI as the mode of detection/readout. Probe types other than antibodies and nucleic acids are also covered in the field of invention, including but not limited to carbohydrate-binding proteins (e.g., lectins), receptors and ligands.
    Type: Application
    Filed: July 12, 2022
    Publication date: November 17, 2022
    Inventors: Mark J. Lim, Gargey Yagnik, Kenneth J. Rothschild
  • Publication number: 20220365098
    Abstract: The field of this invention relates to immunohistochemistry (IHC) and in situ hybridization (ISH) for the targeted detection and mapping of biomolecules (e.g., proteins and miRNAs) in tissues or cells for example, for research use and for clinical use such by pathologists (e.g., biomarker analyses of a resected tumor or tumor biopsy). In particular, the use of mass spectrometric imaging (MSI) as a mode to detect and map the biomolecules in tissues or cells for example. More specifically, the field of this invention relates to photocleavable mass-tag reagents which are attached to probes such as antibodies and nucleic acids and used to achieve multiplex immunohistochemistry and in situ hybridization, with MSI as the mode of detection/readout. Probe types other than antibodies and nucleic acids are also covered in the field of invention, including but not limited to carbohydrate-binding proteins (e.g., lectins), receptors and ligands.
    Type: Application
    Filed: July 13, 2022
    Publication date: November 17, 2022
    Inventors: Mark J. Lim, Gargey Yagnik, Kenneth J. Rothschild