Patents by Inventor Mark K. Bridges

Mark K. Bridges has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9695593
    Abstract: Leaks in a roof membrane are detected by applying a grid of electrically conductive shielding elements on the upper surface separating the membrane into a plurality of zones and generating a potential difference between the elements and a conductive component such as the roof deck or a layer at the deck. In each zone a respective one of a plurality of sensor conductors is mounted separate from the shielding elements and an electrical potential difference is applied between the sensor and the conductive component such that, in the presence of a leak located within the zone, current flows between the sensor conductor and the conductive component through moisture at the leak for detection of the current or resistance indicative of a leak.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: July 4, 2017
    Assignee: Detec Systems LLC
    Inventors: David E. Vokey, Mark K. Bridges
  • Publication number: 20170130459
    Abstract: Leaks in a roof membrane are detected by applying a grid of electrically conductive shielding elements on the upper surface separating the membrane into a plurality of zones and generating a potential difference between the elements and a conductive component such as the roof deck or a layer at the deck. In each zone a respective one of a plurality of sensor conductors is mounted separate from the shielding elements and an electrical potential difference is applied between the sensor and the conductive component such that, in the presence of a leak located within the zone, current flows between the sensor conductor and the conductive component through moisture at the leak for detection of the current or resistance indicative of a leak.
    Type: Application
    Filed: November 10, 2015
    Publication date: May 11, 2017
    Inventors: David E. Vokey, Mark K. Bridges
  • Publication number: 20160218800
    Abstract: A method is provided for detecting intrusion into optical fibers of a Passive Optical Network (PON) of the type which includes a multiplexing system at the head end for separating a data signal output at the head end to the plurality of fibers for supply to user end terminals and a data transmission system at each of the user end terminals for entering onto the fiber data as an optical signal. The method includes providing a monitor system having a transmitter at the head end and a monitor signal analysis system for analyzing changes in the optical monitor signal after transmission along the fiber for detecting an intrusion event. A monitor signal analysis system is provided at one or more user end terminals for detection and conversion of data from the analysis into a digital signal which is then transmitted from the user end terminals back to the head end using the data transmission system through the PON system or separately from the PON system.
    Type: Application
    Filed: December 31, 2013
    Publication date: July 28, 2016
    Applicant: Network Integrity Systems, Inc.
    Inventors: Cary R. Murphy, Daniel Goertzen, Mark K. Bridges
  • Patent number: 9374157
    Abstract: A method is provided for detecting movement indicative of intrusion events on optical drop fibers of a network where the individual drop fiber can be identified to locate the event. The method uses a monitor system at the network end and multiplexing the monitor signal along the individual fibers to the respective terminals. At each of the terminals, the monitor signal is returned unchanged or in modified form along the same or different fibers to the network end. At the network end the received monitor signals is analyzed for changes in said monitor signals indicative of movement. Which one or more of the drop fibers has triggered the alarm is determined by modifying the monitor signal in wavelength or polarization, or by applying a modulation at the source and/or at multiplexing and/or at returning so that the monitor signal of one drop fiber has a difference from the monitor signal of another drop fiber.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: June 21, 2016
    Assignee: Network Integrity Systems, Inc.
    Inventors: Cary R. Murphy, Mark K. Bridges, David E. Vokey, Daniel Goertzen, Joseph Giovannini
  • Publication number: 20150333822
    Abstract: A method is provided for detecting intrusion into an optical cable of an optical network comprising where monitoring light signals are transmitted along a telecommunications optical fiber to be monitored either along a fiber additional to a data fiber or by multiplexing onto a common fiber. The received monitoring light signals after transmission along the telecommunications optical fiber are analyzed for changes indicative of movement of the optical fiber for detecting an intrusion event. The monitoring light signals at the receive end of the fiber signals are returned along the same fiber by a coupler where the legs are connected or by a reflective material.
    Type: Application
    Filed: December 31, 2013
    Publication date: November 19, 2015
    Applicant: Network Integrity Systems, Inc.
    Inventors: Cary R. Murphy, Mark K. Bridges, David Thompson, Joseph Giovannini, David E. Vokey
  • Patent number: 9046669
    Abstract: A fiber optic network has alarmed fiber optic lines in the cables connecting a secured junction box to plural user lock boxes. An outgoing alarm line and return alarm line in each cable connect the junction box to each user box. The outgoing alarm line is looped to the return alarm line inside the user lock box. The return alarm line is looped to the outgoing alarm line of a different cable inside the junction box to interconnect a plurality of alarm lines passing through a plurality of user boxes. A detector detects an alarm signal in the connected alarm lines to trigger an intrusion alarm. Power to the components in the box is disconnected when the box is opened and ventilation openings to the box are closed when the box is closed.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: June 2, 2015
    Assignee: Network Integrity Systems Inc.
    Inventors: Cary R. Murphy, Mark K Bridges, Joseph Giovannini, David Thompson, David E. Vokey
  • Publication number: 20150086195
    Abstract: A method is provided for detecting movement indicative of intrusion events on optical drop fibers of a network where the individual drop fiber can be identified to locate the event. The method uses a monitor system at the network end and multiplexing the monitor signal along the individual fibers to the respective terminals. At each of the terminals, the monitor signal is returned unchanged or in modified form along the same or different fibers to the network end. At the network end the received monitor signals is analyzed for changes in said monitor signals indicative of movement. Which one or more of the drop fibers has triggered the alarm is determined by modifying the monitor signal in wavelength or polarization, or by applying a modulation at the source and/or at multiplexing and/or at returning so that the monitor signal of one drop fiber has a difference from the monitor signal of another drop fiber.
    Type: Application
    Filed: August 12, 2014
    Publication date: March 26, 2015
    Inventors: Cary R. Murphy, Mark K. Bridges, David E. Vokey, Daniel Goertzen
  • Publication number: 20150015398
    Abstract: A method is provided for detecting intrusion into an optical cable of a single mode optical fiber network comprising where monitoring light signals are transmitted along a telecommunications optical fiber to be monitored either along a fiber additional to a data fiber or by multiplexing onto a common fiber. The received monitoring light signals after transmission along the telecommunications optical fiber are analyzed for changes indicative of movement of the optical fiber for detecting an intrusion event. The monitoring light signals at the receive end of the fiber signals are monitored by feeding the signals from the single mode fiber into a multi-mode fiber in a manner which causes changes in modal power distribution which can be detected by taking a portion only of the modes.
    Type: Application
    Filed: August 18, 2014
    Publication date: January 15, 2015
    Inventors: Cary R. Murphy, Mark K. Bridges, David Thompson, Joseph Giovannini, David E. Vokey
  • Publication number: 20140153889
    Abstract: A fiber optic network has alarmed fiber optic lines in the cables connecting a secured junction box to plural user lock boxes. An outgoing alarm line and return alarm line in each cable connect the junction box to each user box. The outgoing alarm line is looped to the return alarm line inside the user lock box. The return alarm line is looped to the outgoing alarm line of a different cable inside the junction box to interconnect a plurality of alarm lines passing through a plurality of user boxes. A detector detects an alarm signal in the connected alarm lines to trigger an intrusion alarm. Power to the components in the box is disconnected when the box is opened and ventilation openings to the box are closed when the box is closed.
    Type: Application
    Filed: October 1, 2013
    Publication date: June 5, 2014
    Inventors: Cary R. Murphy, Mark K. Bridges, Joseph Giovannini, David Thompson, David E. Vokey
  • Publication number: 20140091929
    Abstract: A fiber optic network has alarmed fiber optic lines in the cables connecting a secured junction box to plural user lock boxes. An outgoing alarm line and return alarm line in each cable connect the junction box to each user box. The outgoing alarm line is looped to the return alarm line inside the user lock box. The return alarm line is looped to the outgoing alarm line of a different cable inside the junction box to interconnect a plurality of alarm lines passing through a plurality of user boxes. A detector detects an alarm signal in the connected alarm lines to trigger an intrusion alarm.
    Type: Application
    Filed: October 1, 2012
    Publication date: April 3, 2014
    Inventors: Cary Murphy, Mark K. Bridges, Joseph Giovannini, David E Vokey, David J Thompson, Robert J Murphy
  • Patent number: 8233755
    Abstract: A telecommunications optical fiber is secured against intrusion by detecting manipulation of the optical fiber prior to an intrusion event. This can be used in a non-locating system where the detection end is opposite the transmit end or in a locating system which uses Fresnel reflections and Rayleigh backscattering to the transmit end to detect and then locate the motion. The Rayleigh backscattering time sliced data can be stored in a register until an intrusion event is detected. The detection is carried out by a polarization detection system which includes an optical splitter which is manufactured in simplified form for economic construction. This uses a non-calibrated splitter and less than all four of the Stokes parameters. It can use a polarimeter type function limited to linear and circular polarization or two linear polarizers at 90 degrees.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: July 31, 2012
    Assignee: Network Integrity Systems Inc
    Inventors: Cary R. Murphy, David E. Vokey, Mark K. Bridges
  • Publication number: 20120076453
    Abstract: A telecommunications optical fiber is secured against intrusion by detecting manipulation of the optical fiber prior to an intrusion event. This can be used in a non-locating system where the detection end is opposite the transmit end or in a locating system which uses Fresnel reflections and Rayleigh backscattering to the transmit end to detect and then locate the motion. The Rayleigh backscattering time sliced data can be stored in a register until an intrusion event is detected. The detection is carried out by a polarization detection system which includes an optical splitter which is manufactured in simplified form for economic construction. This uses a non-calibrated splitter and less than all four of the Stokes parameters. It can use a polarimeter type function limited to linear and circular polarization or two linear polarizers at 90 degrees.
    Type: Application
    Filed: December 1, 2011
    Publication date: March 29, 2012
    Inventors: Cary R. Murphy, David E. Vokey, Mark K. Bridges
  • Patent number: 8094977
    Abstract: A telecommunications optical fiber is secured against intrusion by detecting manipulation of the optical fiber prior to an intrusion event. This can be used in a non-locating system where the detection end is opposite the transmit end or in a locating system which uses Fresnel reflections and Rayleigh backscattering to the transmit end to detect and then locate the motion. The Rayleigh backscattering time sliced data can be stored in a register until an intrusion event is detected. The detection is carried out by a polarization detection system which includes an optical splitter which is manufactured in simplified form for economic construction. This uses a non-calibrated splitter and less than all four of the Stokes parameters. It can use a polarimeter type function limited to linear and circular polarization or two linear polarizers at 90 degrees.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: January 10, 2012
    Assignee: Network Integrity Systems Inc.
    Inventors: Cary R. Murphy, David E. Vokey, Mark K. Bridges
  • Patent number: 7706641
    Abstract: Some or all of the optical fibers of a single-mode or multi-mode cable are monitored for intrusion by transmitting through the fibers a signal which can be analyzed for changes in its characteristics which are indicative of movement as a prelude to an intrusion event. To avoid independent monitors of all of the fibers, in some cases the same light signal is looped through a plurality of the fibers in series by passive jumpers. Switches can be used to disconnect out those fibers which are compromised. As an alternative a plurality of separate monitoring signals can be provided each associated with its own sensor where unique combinations of the signals are transmitted through separate fibers allowing a higher number of fibers to be monitored than the number of signals.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: April 27, 2010
    Assignee: Network Integrity Systems, Inc.
    Inventors: Cary R. Murphy, Mark K. Bridges, Joseph Giovanni, David E. Vokey, Daniel M. Goertzen
  • Patent number: 7693359
    Abstract: A telecommunications optical fiber is secured against intrusion by detecting manipulation of the optical fiber prior to an intrusion event. This can be used in a non-locating system where the detection end is opposite the transmit end or in a locating system which uses Fresnel reflections and Rayleigh backscattering to the transmit end to detect and then locate the motion. The Rayleigh backscattering time sliced data can be stored in a register until an intrusion event is detected. The detection is carried out by a polarization detection system which includes an optical splitter which is manufactured in simplified form for economic construction. This uses a non-calibrated splitter and less than all four of the Stokes parameters. It can use a polarimeter type function limited to linear and circular polarization or two linear polarizers at 90 degrees.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: April 6, 2010
    Assignee: Network Integrity Systems, Inc.
    Inventors: Cary R. Murphy, Mark K. Bridges, David E. Vokey
  • Publication number: 20100054657
    Abstract: A telecommunications optical fiber is secured against intrusion by detecting manipulation of the optical fiber prior to an intrusion event. This can be used in a non-locating system where the detection end is opposite the transmit end or in a locating system which uses Fresnel reflections and Rayleigh backscattering to the transmit end to detect and then locate the motion. The Rayleigh backscattering time sliced data can be stored in a register until an intrusion event is detected. The detection is carried out by a polarization detection system which includes an optical splitter which is manufactured in simplified form for economic construction. This uses a non-calibrated splitter and less than all four of the Stokes parameters. It can use a polarimeter type function limited to linear and circular polarization or two linear polarizers at 90 degrees.
    Type: Application
    Filed: June 15, 2005
    Publication date: March 4, 2010
    Inventors: Cary R. Murphy, Mark K. Bridges, David E. Vokey
  • Patent number: 7634387
    Abstract: A signal which varies over time is monitored to determine an alarm condition, where the sample stream of digital values from an A/D converter is divided in to equal length pieces and a Fourier Transform (FT) algorithm is used to transform each piece of the stream into a three dimensional dataset including frequency domain amplitude, frequency and time. A Frequency Envelope is calculated by taking the maxima over the time dimension for a period of time, leaving a two dimensional frequency domain amplitude vs frequency dataset which is compared with new data arriving to determine the alarm condition for each element of the Frequency Envelope either by applying a constant delta additively or multiplicatively or by using a “leaky bucket” algorithm.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: December 15, 2009
    Assignee: Network Integrity Systems
    Inventors: Cary R. Murphy, Daniel M. Goertzen, Mark K. Bridges, David E. Vokey
  • Patent number: 7403675
    Abstract: Intrusion detection for a multimode fiber optic cable uses a light signal launched into the fiber through the low ratio leg of a tap coupler to establish a narrow spectral width, under-filled non-uniform mode field power distribution in the cable. A small portion of the higher order signal modes at the remote end is monitored for transient changes in the mode field power distribution which are characteristic of fiber intrusion to activate an alarm. The active signal of a multimode optical fiber is monitored for both signal degradation and transient power disturbance patterns that could indicate fiber damage or physical intrusion. A translator can be provided in an existing optical fiber system in which the data signals are translated in wavelength and/or launch conditions to optimize the monitoring signals in an otherwise non-optimized system.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: July 22, 2008
    Assignee: Network Integrity Systems Inc.
    Inventors: Cary R. Murphy, Mark K. Bridges, Joseph Giovanni, David E. Vokey
  • Patent number: 7403674
    Abstract: Intrusion detection of one section only of a multimode fiber uses a light signal launched into the fiber at a location spaced from the source through a single mode fiber to establish a narrow spectral width, under-filled non-uniform mode field power distribution in the fiber. A small portion of the higher order signal modes at the a second location also spaced from the destination is sampled by a tap coupler and monitored for transient changes in the mode field power distribution which are characteristic of intrusion to activate an alarm. A fiber being used for data transmission can be monitored for intrusion by introducing a monitor wavelength different from that of the data signal. Central to this invention is the use of a bulk optic (commonly referred to as a pass/reflect) wavelength division multiplexer, one which maintains the modal distribution within the fiber.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: July 22, 2008
    Assignee: Network Integrity Systems Inc.
    Inventors: Cary R. Murphy, Mark K. Bridges, David E. Vokey
  • Patent number: 7376293
    Abstract: Intrusion detection of one section only of a multimode fiber uses a light signal launched into the fiber at a location spaced from the source through a single mode fiber to establish a narrow spectral width, under-filled non-uniform mode field power distribution in the fiber. A small portion of the higher order signal modes at the a second location also spaced from the destination is sampled by a tap coupler and monitored for transient changes in the mode field power distribution which are characteristic of intrusion to activate an alarm. The active signal of a multimode optical fiber is monitored for both signal degradation and transient power disturbance patterns that could indicate fiber damage or physical intrusion. A translator can be provided in an existing optical fiber system in which the data signals are translated in wavelength and/or launch conditions to optimize the monitoring signals in an otherwise non-optimized system.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: May 20, 2008
    Assignee: Network Intergrity Systems Inc.
    Inventors: Cary R. Murphy, Mark K. Bridges, David E. Vokey