Patents by Inventor Mark Kassab

Mark Kassab has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8560906
    Abstract: Disclosed herein are exemplary methods, apparatus, and systems for performing timing-aware automatic test pattern generation (ATPG) that can be used, for example, to improve the quality of a test set generated for detecting delay defects or holding time defects. In certain embodiments, timing information derived from various sources (e.g. from Standard Delay Format (SDF) files) is integrated into an ATPG tool. The timing information can be used to guide the test generator to detect the faults through certain paths (e.g., paths having a selected length, or range of lengths, such as the longest or shortest paths). To avoid propagating the faults through similar paths repeatedly, a weighted random method can be used to improve the path coverage during test generation. Experimental results show that significant test quality improvement can be achieved when applying embodiments of timing-aware ATPG to industrial designs.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: October 15, 2013
    Assignee: Mentor Graphics Corporation
    Inventors: Xijiang Lin, Kun-Han Tsai, Mark Kassab, Chen Wang, Janusz Rajski
  • Patent number: 8533547
    Abstract: A method for applying test patterns to scan chains in a circuit-under-test. The method includes providing a compressed test pattern of bits; decompressing the compressed test pattern into a decompressed test pattern of bits as the compressed test pattern is being provided; and applying the decompressed test pattern to scan chains of the circuit-under-test. The actions of providing the compressed test pattern, decompressing the compressed test pattern, and applying the decompressed pattern are performed synchronously at the same or different clock rates, depending on the way in which the decompressed bits are to be generated. A circuit that performs the decompression includes a decompressor such as a linear finite state machine adapted to receive a compressed test pattern of bits. The decompressor decompresses the test pattern into a decompressed test pattern of bits as the compressed test pattern is being received.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: September 10, 2013
    Assignee: Mentor Graphics Corporation
    Inventors: Janusz Rajski, Jerzy Tyszer, Mark Kassab, Nilanjan Mukherjee
  • Patent number: 8499209
    Abstract: Test patterns for at-speed scan tests are generated by filling unspecified bits of test cubes with functional background data. Functional background data are scan cell values observed when switching activity of the circuit under test is near a steady state. Hardware implementations in EDT (embedded deterministic test) environment are also disclosed.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: July 30, 2013
    Assignee: Mentor Graphics Corporation
    Inventors: Janusz Rajski, Elham K. Moghaddam, Nilanjan Mukherjee, Mark A Kassab, Xijiang Lin
  • Patent number: 8290738
    Abstract: Disclosed below are representative embodiments of methods, apparatus, and systems used to reduce power consumption during integrated circuit testing. Embodiments of the disclosed technology can be used to provide a low power test scheme and can be integrated with a variety of compression hardware architectures (e.g., an embedded deterministic test (“EDT”) architecture). Among the disclosed embodiments are integrated circuits having programmable test stimuli selectors, programmable scan enable circuits, programmable clock enable circuits, programmable shift enable circuits, and/or programmable reset enable circuits. Exemplary test pattern generation methods that can be used to generate test patterns for use with any of the disclosed embodiments are also disclosed.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: October 16, 2012
    Assignee: Mentor Graphics Corporation
    Inventors: Xijiang Lin, Dariusz Czysz, Mark Kassab, Grzegorz Mrugalski, Janusz Rajski, Jerzy Tyszer
  • Publication number: 20120174049
    Abstract: Disclosed herein are exemplary methods, apparatus, and systems for performing timing-aware automatic test pattern generation (ATPG) that can be used, for example, to improve the quality of a test set generated for detecting delay defects or holding time defects. In certain embodiments, timing information derived from various sources (e.g. from Standard Delay Format (SDF) files) is integrated into an ATPG tool. The timing information can be used to guide the test generator to detect the faults through certain paths (e.g., paths having a selected length, or range of lengths, such as the longest or shortest paths). To avoid propagating the faults through similar paths repeatedly, a weighted random method can be used to improve the path coverage during test generation. Experimental results show that significant test quality improvement can be achieved when applying embodiments of timing-aware ATPG to industrial designs.
    Type: Application
    Filed: October 31, 2011
    Publication date: July 5, 2012
    Inventors: Xijiang Lin, Kun-Han Tsai, Mark Kassab, Chen Wang, Janusz Rajski
  • Patent number: 8108743
    Abstract: A method and apparatus to compact test responses containing unknown values or multiple fault effects in a deterministic test environment. The proposed selective compactor employs a linear compactor with selection circuitry for selectively passing test responses to the compactor. In one embodiment, gating logic is controlled by a control register, a decoder, and flag registers. This circuitry, in conjunction with any conventional parallel test-response compaction scheme, allows control circuitry to selectively enable serial outputs of desired scan chains to be fed into a parallel compactor at a particular clock rate. A first flag register determines whether all, or only some, scan chain outputs are enabled and fed through the compactor. A second flag register determines if the scan chain selected by the selector register is enabled and all other scan chains are disabled, or the selected scan chain is disabled and all other scan chains are enabled.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: January 31, 2012
    Assignee: Mentor Graphics Corporation
    Inventors: Janusz Rajski, Jerzy Tyszer, Mark Kassab, Nilanjan Mukherjee
  • Patent number: 8051352
    Abstract: Disclosed herein are exemplary methods, apparatus, and systems for performing timing-aware automatic test pattern generation (ATPG) that can be used, for example, to improve the quality of a test set generated for detecting delay defects or holding time defects. In certain embodiments, timing information derived from various sources (e.g. from Standard Delay Format (SDF) files) is integrated into an ATPG tool. The timing information can be used to guide the test generator to detect the faults through certain paths (e.g., paths having a selected length, or range of lengths, such as the longest or shortest paths). To avoid propagating the faults through similar paths repeatedly, a weighted random method can be used to improve the path coverage during test generation. Experimental results show that significant test quality improvement can be achieved when applying embodiments of timing-aware ATPG to industrial designs.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: November 1, 2011
    Assignee: Mentor Graphics Corporation
    Inventors: Xijiang Lin, Kun-Han Tsai, Mark Kassab, Chen Wang, Janusz Rajski
  • Publication number: 20110258504
    Abstract: Disclosed are representative embodiments of methods, apparatus, and systems for partitioning-based Test Access Mechanisms (TAM). Test response data are captured by scan cells of a plurality scan chains in a circuit under test and are compared with test response data expected for a good CUT to generate check values. Based on the check values, partition pass/fail signals are generated by partitioning scheme generators. Each of the partitioning scheme generators is configured to generate one of the partition pass/fail signals for one of partitioning schemes. A partitioning scheme divides the scan cells into a set of non-overlapping partitions. Based on the partition pass/fail signals, a failure diagnosis process may be performed.
    Type: Application
    Filed: April 20, 2011
    Publication date: October 20, 2011
    Inventors: Wu-Tung Cheng, Manish Sharma, Avijit Dutta, Robert Brady Benware, Mark A. Kassab
  • Patent number: 8024387
    Abstract: Method and apparatus for synthesizing high-performance linear finite state machines (LFSMs) such as linear feedback shift registers (LFSRs) or cellular automata (CA). Given a characteristic polynomial for the circuit, the method obtains an original LFSM circuit such as a type I or type II LFSR. Feedback connections within the original circuit are then determined. Subsequently, a number of transformations that shift the feedback connections can be applied in such a way that properties of the original circuit are preserved in a modified LFSM circuit. In particular, if the original circuit is represented by a primitive characteristic polynomial, the method preserves the maximum-length property of the original circuit in the modified circuit and enables the modified circuit to produce the same m-sequence as the original circuit.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: September 20, 2011
    Assignee: Mentor Graphics Corporation
    Inventors: Janusz Rajski, Jerzy Tyszer, Mark Kassab, Nilanjan Mukherjee
  • Publication number: 20110214026
    Abstract: A method for applying test patterns to scan chains in a circuit-under-test. The method includes providing a compressed test pattern of bits; decompressing the compressed test pattern into a decompressed test pattern of bits as the compressed test pattern is being provided; and applying the decompressed test pattern to scan chains of the circuit-under-test. The actions of providing the compressed test pattern, decompressing the compressed test pattern, and applying the decompressed pattern are performed synchronously at the same or different clock rates, depending on the way in which the decompressed bits are to be generated. A circuit that performs the decompression includes a decompressor such as a linear finite state machine adapted to receive a compressed test pattern of bits. The decompressor decompresses the test pattern into a decompressed test pattern of bits as the compressed test pattern is being received.
    Type: Application
    Filed: January 25, 2011
    Publication date: September 1, 2011
    Inventors: Janusz Rajski, Jerzy Tyszer, Mark Kassab, Nilanjan Mukherjee
  • Patent number: 7984354
    Abstract: Improved responses can be generated to scan patterns (e.g., test patterns) for an electronic circuit designs having timing exception paths by more accurately determining the unknown values that propagate to observation points in the circuit, where the response is captured. For instance, the responses are determined more accurately by analyzing the effect of sensitizing a timing exception path during each time frame associated with a scan pattern. Path sensitization can be determined based on observing whether values injected at starting points of the timing exception paths due to signal transitions and glitches propagate to their end points. The response can be updated by masking the affected end points and propagating unknown values further in the circuit to determine whether they are captured at observation points of the circuit. For instance, the methods and systems described herein may result in reduced unknowns, improved test coverage and test compression.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: July 19, 2011
    Assignee: Mentor Graphics Corporation
    Inventors: Dhiraj Goswami, Kun-Han Tsai, Mark Kassab, Janusz Rajski
  • Publication number: 20110167309
    Abstract: A novel decompressor/PRPG on a microchip performs both pseudo-random test pattern generation and decompression of deterministic test patterns for a circuit-under-test on the chip. The decompressor/PRPG has two phases of operation. In a pseudo-random phase, the decompressor/PRPG generates pseudo-random test patterns that are applied to scan chains within the circuit-under test. In a deterministic phase, compressed deterministic test patterns from an external tester are applied to the decompressor/PRPG. The patterns are decompressed as they are clocked through the decompressor/PRPG into the scan chains. The decompressor/PRPG thus provides much better fault coverage than a simple PRPG, but without the cost of a complete set of fully-specified deterministic test patterns.
    Type: Application
    Filed: January 3, 2011
    Publication date: July 7, 2011
    Inventors: Janusz Rajski, Jerzy Tyszer, Mark Kassab, Nilanjan Mukherjee
  • Publication number: 20110166818
    Abstract: Disclosed below are representative embodiments of methods, apparatus, and systems used to reduce power consumption during integrated circuit testing. Embodiments of the disclosed technology can be used to provide a low power test scheme and can be integrated with a variety of compression hardware architectures (e.g., an embedded deterministic test (“EDT”) architecture). Among the disclosed embodiments are integrated circuits having programmable test stimuli selectors, programmable scan enable circuits, programmable clock enable circuits, programmable shift enable circuits, and/or programmable reset enable circuits. Exemplary test pattern generation methods that can be used to generate test patterns for use with any of the disclosed embodiments are also disclosed.
    Type: Application
    Filed: March 16, 2011
    Publication date: July 7, 2011
    Inventors: Xijiang Lin, Dariusz Czysz, Mark Kassab, Grzegorz Mrugalski, Janusz Rajski, Jerzy Tyszer
  • Publication number: 20110138242
    Abstract: A method and apparatus to compact test responses containing unknown values or multiple fault effects in a deterministic test environment. The proposed selective compactor employs a linear compactor with selection circuitry for selectively passing test responses to the compactor. In one embodiment, gating logic is controlled by a control register, a decoder, and flag registers. This circuitry, in conjunction with any conventional parallel test-response compaction scheme, allows control circuitry to selectively enable serial outputs of desired scan chains to be fed into a parallel compactor at a particular clock rate. A first flag register determines whether all, or only some, scan chain outputs are enabled and fed through the compactor. A second flag register determines if the scan chain selected by the selector register is enabled and all other scan chains are disabled, or the selected scan chain is disabled and all other scan chains are enabled.
    Type: Application
    Filed: September 27, 2010
    Publication date: June 9, 2011
    Inventors: Janusz Rajski, Jerzy Tyszer, Mark Kassab, Nilanjan Mukherjee
  • Patent number: 7925465
    Abstract: Disclosed below are representative embodiments of methods, apparatus, and systems used to reduce power consumption during integrated circuit testing. Embodiments of the disclosed technology can be used to provide a low power test scheme and can be integrated with a variety of compression hardware architectures (e.g., an embedded deterministic test (“EDT”) architecture). Among the disclosed embodiments are integrated circuits having programmable test stimuli selectors, programmable scan enable circuits, programmable clock enable circuits, programmable shift enable circuits, and/or programmable reset enable circuits. Exemplary test pattern generation methods that can be used to generate test patterns for use with any of the disclosed embodiments are also disclosed.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: April 12, 2011
    Assignee: Mentor Graphics Corporation
    Inventors: Xijiang Lin, Dariusz Czysz, Mark Kassab, Grzegorz Mrugalski, Janusz Rajski, Jerzy Tyszer
  • Patent number: 7900104
    Abstract: A method for compressing test patterns to be applied to scan chains in a circuit under test. The method includes generating symbolic expressions that are associated with scan cells within the scan chains. The symbolic expressions are created by assigning variables to bits on external input channels supplied to the circuit under test. Using symbolic simulation, the variables are applied to a decompressor to obtain the symbolic expressions. A test cube is created using a deterministic pattern that assigns values to the scan cells to test faults within the integrated circuit. A set of equations is formulated by equating the assigned values in the test cube to the symbolic expressions associated with the corresponding scan cell. The equations are solved to obtain the compressed test pattern.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: March 1, 2011
    Assignee: Mentor Graphics Corporation
    Inventors: Janusz Rajski, Mark Kassab, Nilanjan Mukherjee, Jerzy Tyszer
  • Patent number: 7877656
    Abstract: A method for applying test patterns to scan chains in a circuit-under-test. The method includes providing a compressed test pattern of bits; decompressing the compressed test pattern into a decompressed test pattern of bits as the compressed test pattern is being provided; and applying the decompressed test pattern to scan chains of the circuit-under-test. The actions of providing the compressed test pattern, decompressing the compressed test pattern, and applying the decompressed pattern are performed synchronously at the same or different clock rates, depending on the way in which the decompressed bits are to be generated. A circuit that performs the decompression includes a decompressor such as a linear feedbackstate machine adapted to receive a compressed test pattern of bits. The decompressor decompresses the test pattern into a decompressed test pattern of bits as the compressed test pattern is being received.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: January 25, 2011
    Assignee: Mentor Graphics Corporation
    Inventors: Janusz Rajski, Mark Kassab, Nilanjan Mukherjee, Jerzy Tyszer
  • Patent number: 7865794
    Abstract: A novel decompressor/PRPG on a microchip performs both pseudo-random test pattern generation and decompression of deterministic test patterns for a circuit-under-test on the chip. The decompressor/PRPG has two phases of operation. In a pseudo-random phase, the decompressor/PRPG generates pseudo-random test patterns that are applied to scan chains within the circuit-under test. In a deterministic phase, compressed deterministic test patterns from an external tester are applied to the decompressor/PRPG. The patterns are decompressed as they are clocked through the decompressor/PRPG into the scan chains. The decompressor/PRPG thus provides much better fault coverage than a simple PRPG, but without the cost of a complete set of fully-specified deterministic test patterns.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: January 4, 2011
    Assignee: Mentor Graphics Corporation
    Inventors: Janusz Rajski, Jerzy Tyszer, Mark Kassab, Nilanjan Mukherjee
  • Publication number: 20100313089
    Abstract: Methods and devices for using high-speed serial links for scan testing are disclosed. The methods can work with any scheme of scan data compression or with uncompressed scan testing. The protocol and hardware to support high speed data transfer reside on both the tester and the device under test. Control data may be transferred along with scan data or be partially generated on chip. Clock signals for testing may be generated on chip as well. In various implementations, the SerDes (Serializer/Deserializer) may be shared with other applications. The Aurora Protocol may be used to transport industry standard protocols. To compensate for effects of asynchronous operation of a conventional high-speed serial link, buffers may be used. The high-speed serial interface may use a data conversion block to drive test cores.
    Type: Application
    Filed: July 20, 2009
    Publication date: December 9, 2010
    Inventors: Janusz Rajski, Nilanjan Mukherjee, Mark A. Kassab, Thomas H. Rinderknecht, Mohamed Dessouky
  • Publication number: 20100275077
    Abstract: Test patterns for at-speed scan tests are generated by filling unspecified bits of test cubes with functional background data. Functional background data are scan cell values observed when switching activity of the circuit under test is near a steady state. Hardware implementations in EDT (embedded deterministic test) environment are also disclosed.
    Type: Application
    Filed: April 22, 2010
    Publication date: October 28, 2010
    Inventors: Janusz Rajski, Elham K. Moghaddam, Nilanjan Mukherjee, Mark A. Kassab, Xijiang Lin