Patents by Inventor Mark Kiehlbauch

Mark Kiehlbauch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11678477
    Abstract: Some embodiments include methods in which a pair of spaced-apart adjacent features is formed over a substrate. The features have silicon dioxide surfaces. Silicon nitride is deposited between the features. A first region of the silicon nitride is protected with a mask while a second region is not. The second region is removed to form an opening between the features. Some embodiments include semiconductor constructions that contain a pair of spaced-apart adjacent features. The features are lines extending along a first direction and are spaced from one another by a trench. Alternating plugs and intervening materials are within the trench, with the plugs and intervening materials alternating along the first direction. The intervening materials consist of silicon nitride, and the plugs have lateral peripheries that directly contact silicon dioxide of the features, and that directly contact silicon nitride of the intervening regions.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: June 13, 2023
    Assignee: Micron Technology, Inc.
    Inventor: Mark Kiehlbauch
  • Publication number: 20210043631
    Abstract: Some embodiments include methods in which a pair of spaced-apart adjacent features is formed over a substrate. The features have silicon dioxide surfaces. Silicon nitride is deposited between the features. A first region of the silicon nitride is protected with a mask while a second region is not. The second region is removed to form an opening between the features. Some embodiments include semiconductor constructions that contain a pair of spaced-apart adjacent features. The features are lines extending along a first direction and are spaced from one another by a trench. Alternating plugs and intervening materials are within the trench, with the plugs and intervening materials alternating along the first direction. The intervening materials consist of silicon nitride, and the plugs have lateral peripheries that directly contact silicon dioxide of the features, and that directly contact silicon nitride of the intervening regions.
    Type: Application
    Filed: October 22, 2020
    Publication date: February 11, 2021
    Applicant: Micron Technology, Inc.
    Inventor: Mark Kiehlbauch
  • Patent number: 10879247
    Abstract: Some embodiments include methods in which a pair of spaced-apart adjacent features is formed over a substrate. The features have silicon dioxide surfaces. Silicon nitride is deposited between the features. A first region of the silicon nitride is protected with a mask while a second region is not. The second region is removed to form an opening between the features. Some embodiments include semiconductor constructions that contain a pair of spaced-apart adjacent features. The features are lines extending along a first direction and are spaced from one another by a trench. Alternating plugs and intervening materials are within the trench, with the plugs and intervening materials alternating along the first direction. The intervening materials consist of silicon nitride, and the plugs have lateral peripheries that directly contact silicon dioxide of the features, and that directly contact silicon nitride of the intervening regions.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: December 29, 2020
    Assignee: Micron Technology, Inc.
    Inventor: Mark Kiehlbauch
  • Publication number: 20180286865
    Abstract: Some embodiments include methods in which a pair of spaced-apart adjacent features is formed over a substrate. The features have silicon dioxide surfaces. Silicon nitride is deposited between the features. A first region of the silicon nitride is protected with a mask while a second region is not. The second region is removed to form an opening between the features. Some embodiments include semiconductor constructions that contain a pair of spaced-apart adjacent features. The features are lines extending along a first direction and are spaced from one another by a trench. Alternating plugs and intervening materials are within the trench, with the plugs and intervening materials alternating along the first direction. The intervening materials consist of silicon nitride, and the plugs have lateral peripheries that directly contact silicon dioxide of the features, and that directly contact silicon nitride of the intervening regions.
    Type: Application
    Filed: June 1, 2018
    Publication date: October 4, 2018
    Applicant: Micron Technology, Inc.
    Inventor: Mark Kiehlbauch
  • Patent number: 10014301
    Abstract: Some embodiments include methods in which a pair of spaced-apart adjacent features is formed over a substrate. The features have silicon dioxide surfaces. Silicon nitride is deposited between the features. A first region of the silicon nitride is protected with a mask while a second region is not. The second region is removed to form an opening between the features. Some embodiments include semiconductor constructions that contain a pair of spaced-apart adjacent features. The features are lines extending along a first direction, and are spaced from one another by a trench. Alternating plugs and intervening materials are within the trench, with the plugs and intervening materials alternating along the first direction. The intervening materials consist of silicon nitride, and the plugs have lateral peripheries that directly contact silicon dioxide of the features, and that directly contact silicon nitride of the intervening regions.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: July 3, 2018
    Assignee: Micron Technology, Inc.
    Inventor: Mark Kiehlbauch
  • Patent number: 9443756
    Abstract: A method of forming a substrate opening includes forming a plurality of side-by-side openings in a substrate. At least some of immediately adjacent side-by-side openings are formed in the substrate to different depths relative one another. Walls that are laterally between the side-by-side openings are removed to form a larger opening having a non-vertical sidewall surface where the walls were removed in at least one straight-line vertical cross-section that passes through the sidewall surface orthogonally to the removed walls.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: September 13, 2016
    Assignee: Micron Technology, Inc.
    Inventor: Mark Kiehlbauch
  • Publication number: 20160005742
    Abstract: Some embodiments include methods in which a pair of spaced-apart adjacent features is formed over a substrate. The features have silicon dioxide surfaces. Silicon nitride is deposited between the features. A first region of the silicon nitride is protected with a mask while a second region is not. The second region is removed to form an opening between the features. Some embodiments include semiconductor constructions that contain a pair of spaced-apart adjacent features. The features are lines extending along a first direction, and are spaced from one another by a trench. Alternating plugs and intervening materials are within the trench, with the plugs and intervening materials alternating along the first direction. The intervening materials consist of silicon nitride, and the plugs have lateral peripheries that directly contact silicon dioxide of the features, and that directly contact silicon nitride of the intervening regions.
    Type: Application
    Filed: September 8, 2015
    Publication date: January 7, 2016
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Mark Kiehlbauch
  • Patent number: 9224798
    Abstract: A capacitor forming method includes forming an electrically conductive support material over a substrate, forming an opening through at least the support material to the substrate, and, after forming the opening, forming a capacitor structure contacting the substrate and the support material in the opening. The support material contains at least 25 at % carbon. Another capacitor forming method includes forming a support material over a substrate, forming an opening through at least the support material to the substrate, and, after forming the opening, forming a capacitor structure contacting the substrate and the support material in the opening. The support material contains at least 20 at % carbon. The support material has a thickness and the opening has an aspect ratio 20:1 or greater within the thickness of the support material.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: December 29, 2015
    Assignee: Micron Technology, Inc.
    Inventor: Mark Kiehlbauch
  • Publication number: 20150287571
    Abstract: Plasma processing systems and methods for using pre-dissociated and/or pre-ionized tuning gases are disclosed herein. In one embodiment, a plasma processing system includes a reaction chamber, a support element in the reaction chamber, and one or more cathode discharge assemblies in the reaction chamber. The reaction chamber is configured to produce a plasma in an interior volume of the chamber. The support element positions a microelectronic workpiece in the reaction chamber, and the cathode discharge assembly supplies an at least partially dissociated and/or ionized tuning gas to the workpiece in the chamber.
    Type: Application
    Filed: June 22, 2015
    Publication date: October 8, 2015
    Inventor: Mark Kiehlbauch
  • Patent number: 9153497
    Abstract: Some embodiments include methods in which a pair of spaced-apart adjacent features is formed over a substrate. The features have silicon dioxide surfaces. Silicon nitride is deposited between the features. A first region of the silicon nitride is protected with a mask while a second region is not. The second region is removed to form an opening between the features. Some embodiments include semiconductor constructions that contain a pair of spaced-apart adjacent features. The features are lines extending along a first direction, and are spaced from one another by a trench. Alternating plugs and intervening materials are within the trench, with the plugs and intervening materials alternating along the first direction. The intervening materials consist of silicon nitride, and the plugs have lateral peripheries that directly contact silicon dioxide of the features, and that directly contact silicon nitride of the intervening regions.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: October 6, 2015
    Assignee: Micron Technology, Inc.
    Inventor: Mark Kiehlbauch
  • Publication number: 20150214100
    Abstract: A method of forming a substrate opening includes forming a plurality of side-by-side openings in a substrate. At least some of immediately adjacent side-by-side openings are formed in the substrate to different depths relative one another. Walls that are laterally between the side-by-side openings are removed to form a larger opening having a non-vertical sidewall surface where the walls were removed in at least one straight-line vertical cross-section that passes through the sidewall surface orthogonally to the removed walls.
    Type: Application
    Filed: March 31, 2015
    Publication date: July 30, 2015
    Inventor: Mark Kiehlbauch
  • Patent number: 9090460
    Abstract: Plasma processing systems and methods for using pre-dissociated and/or pre-ionized tuning gases are disclosed herein. In one embodiment, a plasma processing system includes a reaction chamber, a support element in the reaction chamber, and one or more cathode discharge assemblies in the reaction chamber. The reaction chamber is configured to produce a plasma in an interior volume of the chamber. The support element positions a microelectronic workpiece in the reaction chamber, and the cathode discharge assembly supplies an at least partially dissociated and/or ionized tuning gas to the workpiece in the chamber.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: July 28, 2015
    Assignee: Micron Technology, Inc.
    Inventor: Mark Kiehlbauch
  • Publication number: 20150194321
    Abstract: A method of processing a polysilicon-comprising composition comprises forming a first wall comprising at least one recess in polysilicon. A second wall comprising polysilicon is formed. Material other than polysilicon is deposited within the at least one recess and over the polysilicon of the second wall. The material is etched selectively relative to polysilicon to expose polysilicon of the second wall and to leave the material within the at least one recess in the first wall. The exposed polysilicon of the second wall is etched selectively relative to the material within the at least one recess in the first wall. Other methods are disclosed.
    Type: Application
    Filed: January 9, 2014
    Publication date: July 9, 2015
    Applicant: Micron Technology, Inc.
    Inventors: Guangjun Yang, Mark Kiehlbauch
  • Patent number: 9005463
    Abstract: A method of forming a substrate opening includes forming a plurality of side-by-side openings in a substrate. At least some of immediately adjacent side-by-side openings are formed in the substrate to different depths relative one another. Walls that are laterally between the side-by-side openings are removed to form a larger opening having a non-vertical sidewall surface where the walls were removed in at least one straight-line vertical cross-section that passes through the sidewall surface orthogonally to the removed walls.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: April 14, 2015
    Assignee: Micron Technology, Inc.
    Inventor: Mark Kiehlbauch
  • Patent number: 8910591
    Abstract: A capacitively coupled plasma reactor comprising a processing chamber, a first electrode, a second electrode and a thermoelectric unit. The processing chamber has an upper portion with a gas inlet and a lower portion, and the upper portion is in fluid communication with the lower portion. The first electrode has a front side and a backside and is positioned at the upper portion of the processing chamber. The second electrode is positioned in the lower portion of the processing chamber and is spaced apart from the front side of the first electrode. The thermoelectric unit is positioned proximate to the backside of the first electrode and is capable of heating and cooling the first electrode.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: December 16, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Mark Kiehlbauch
  • Publication number: 20140357086
    Abstract: A method of forming a substrate opening includes forming a plurality of side-by-side openings in a substrate. At least some of immediately adjacent side-by-side openings are formed in the substrate to different depths relative one another. Walls that are laterally between the side-by-side openings are removed to form a larger opening having a non-vertical sidewall surface where the walls were removed in at least one straight-line vertical cross-section that passes through the sidewall surface orthogonally to the removed walls.
    Type: Application
    Filed: May 29, 2013
    Publication date: December 4, 2014
    Inventor: Mark Kiehlbauch
  • Publication number: 20140299997
    Abstract: Methods are disclosed, including for increasing the density of isolated features in an integrated circuit. Also disclosed are associated structures. In some embodiments, contacts are formed on pitch with other structures, such as conductive interconnects that may be formed by pitch multiplication. To form the contacts, in some embodiments, a pattern corresponding to some of the contacts is formed in a selectively definable material such as photoresist. Features in the selectively definable material are trimmed, and spacer material is blanket deposited over the features and the deposited material is then etched to leave spacers on sides of the features. The selectively definable material is removed, leaving a mask defined by the spacer material. The pattern defined by the spacer material may be transferred to a substrate, to form on pitch contacts. In some embodiments, the on pitch contacts may be used to electrically contact conductive interconnects in the substrate.
    Type: Application
    Filed: June 23, 2014
    Publication date: October 9, 2014
    Inventors: Gurtej Sandhu, Mark Kiehlbauch, Steve Kramer, John Smythe
  • Patent number: 8853050
    Abstract: Some embodiments include methods of making stud-type capacitors utilizing carbon-containing support material. Openings may be formed through the carbon-containing support material to electrical nodes, and subsequently conductive material may be grown within the openings. The carbon-containing support material may then be removed, and the conductive material utilized as stud-type storage nodes of stud-type capacitors. The stud-type capacitors may be incorporated into DRAM, and the DRAM may be utilized in electronic systems.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: October 7, 2014
    Assignee: Micron Technology
    Inventors: Mark Kiehlbauch, Kevin R. Shea
  • Publication number: 20140264152
    Abstract: In the manufacture of integrated circuits, reactive compositions that include a reactive etchant species and an oxygen-containing species can provide selective removal of target material and can reduce contamination of gas delivery lines.
    Type: Application
    Filed: May 29, 2014
    Publication date: September 18, 2014
    Applicant: Micron Technology, Inc.
    Inventors: Aaron R. Wilson, Mark Kiehlbauch
  • Publication number: 20140238955
    Abstract: Plasma processing systems and methods for using pre-dissociated and/or pre-ionized tuning gases are disclosed herein. In one embodiment, a plasma processing system includes a reaction chamber, a support element in the reaction chamber, and one or more cathode discharge assemblies in the reaction chamber. The reaction chamber is configured to produce a plasma in an interior volume of the chamber. The support element positions a microelectronic workpiece in the reaction chamber, and the cathode discharge assembly supplies an at least partially dissociated and/or ionized tuning gas to the workpiece in the chamber.
    Type: Application
    Filed: May 8, 2014
    Publication date: August 28, 2014
    Applicant: Micron Technology, Inc.
    Inventor: Mark Kiehlbauch