Patents by Inventor Mark Leung

Mark Leung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240130742
    Abstract: Implants for the fusion or fixation of two bone segments are described. For example, the implants can be used for the fusion or fixation of the sacroiliac joint. The implants can include fenestrations, have a rectilinear overall cross-sectional area, and have a curvature. Some implants can also be used to rescue failed implants.
    Type: Application
    Filed: May 14, 2023
    Publication date: April 25, 2024
    Inventors: Mark A. REILEY, Bret SCHNEIDER, Joanne LEUNG, Paul M. SAND, Scott A. YERBY
  • Publication number: 20240115310
    Abstract: A method to treat a human patient including: advancing a catheter through a natural airway of the patient and positioning a distal portion of the catheter in the natural airway of a lung of the patient to a target region in the lung, injecting a conductive hypertonic saline solution having a concentration of at least 5% of sodium chloride by weight/volume from the distal portion of the catheter into the target region; delivering energy from the distal portion into the hypertonic saline solution in the target region, wherein the energy heats the hypertonic saline solution in the target region; ablating the target region with the heated conductive hypertonic saline solution, sensing electric impedance or electric conductivity of the target region during the delivery of the energy, and controlling the rate or a bolus of the hypertonic saline solution injected into the target region based on the electric impedance or the electric conductivity.
    Type: Application
    Filed: October 16, 2023
    Publication date: April 11, 2024
    Inventors: Dorin Panescu, Shashank Raina, Simplicio Velilla, Mark Gelfand, Mark Leung
  • Publication number: 20240111838
    Abstract: A data processing apparatus includes circuitry configured to: receive a first signal indicative of one or more words communicated from a first user of online content to one or more second users of online content; classify the one or more words using the first signal; receive one or more second signals indicative of one or more physiological characteristics of the first user within a time period of a start of the communication of the one or more words; classify the one or more physiological characteristics using the one or more second signals; based on a classification of the one or more words and a classification of the one or more physiological characteristics, generate an action signal indicating that an action associated with the first user of the online content is to be taken, the action signal indicating a characteristic of the action determined based on a combination of the classification of the one or more words and the classification of the one or more physiological characteristics; and output the act
    Type: Application
    Filed: September 26, 2023
    Publication date: April 4, 2024
    Applicant: Sony Interactive Entertainment Inc.
    Inventors: Mark Jacobus Breugelmans, Michael Eder, Jun Leung, Hogarth Andall, Danjeli Schembri, Bee Lay Tan
  • Patent number: 11938479
    Abstract: A fluidic device holder configured to orient a fluidic device. The device holder includes a support structure configured to receive a fluidic device. The support structure includes a base surface that faces in a direction along the Z-axis and is configured to have the fluidic device positioned thereon. The device holder also includes a plurality of reference surfaces facing in respective directions along an XY-plane. The device holder also includes an alignment assembly having an actuator and a movable locator arm that is operatively coupled to the actuator. The locator arm has an engagement end. The actuator moves the locator arm between retracted and biased positions to move the engagement end away from and toward the reference surfaces. The locator arm is configured to hold the fluidic device against the reference surfaces when the locator arm is in the biased position.
    Type: Grant
    Filed: May 8, 2023
    Date of Patent: March 26, 2024
    Assignee: ILLUMINA, INC.
    Inventors: Erik Williamson, Bryan Crane, Patrick Leung, Drew Verkade, Mark T. Reed
  • Patent number: 11925409
    Abstract: An ablation catheter configured to ablate tissue in a lung of a patient including: a flexible shaft that advances endobronchially into an airway of the lung and has an outer diameter of 2.0 mm or less; an ablation electrode attached to a distal portion of the flexible shaft and to deliver radiofrequency (RF) electrical current to the tissue and conductively connectable to an RF electrical energy source external to the patient; wherein an outer diameter of an assembly of the flexible shaft and the ablation electrode is no greater than 2.0 mm; a liquid outlet on the distal portion and configured to be in fluid communication with a source of hypertonic saline solution; and a first occluder attached to the flexible shaft proximal to the ablation electrode and proximal to the liquid outlet, wherein the first occluder is configured to expand to occlude the airway.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: March 12, 2024
    Assignee: ZIDAN MEDICAL INC.
    Inventors: Dorin Panescu, Shashank Raina, Mark Gelfand, Mark Leung, Simplicio Velilla
  • Publication number: 20230355300
    Abstract: A system for treatment of a target region of lung tissue including: a flow regulator configured to be interposed between a conductive fluid source and a conductive fluid outlet positionable at or in proximity of the target region of lung tissue, the flow regulator being further configured for controlling a flow rate or a bolus quantity of conductive fluid coming from the fluid source and delivered to the conductive fluid outlet; and a controller communicatively connectable with said flow regulator and with at least one sensor, with the at least one sensor being configured for detecting values taken by at least one control parameter representative of a physical property, wherein the physical property is one of temperature (T), pressure (p), electric impedance (Z), or electric conductivity (C) of material present at or in proximity of the target region of lung tissue.
    Type: Application
    Filed: September 27, 2021
    Publication date: November 9, 2023
    Inventors: Dorin PANESCU, Shashank RAINA, Simplicio Aguilar VELILLA, Mark GELFAND, Mark LEUNG
  • Publication number: 20210068895
    Abstract: An ablation catheter configured to ablate tissue in a lung of a patient including: a flexible shaft that advances endobronchially into an airway of the lung and has an outer diameter of 2.0 mm or less; an ablation electrode attached to a distal portion of the flexible shaft and to deliver radiofrequency (RF) electrical current to the tissue and conductively connectable to an RF electrical energy source external to the patient; wherein an outer diameter of an assembly of the flexible shaft and the ablation electrode is no greater than 2.0 mm; a liquid outlet on the distal portion and configured to be in fluid communication with a source of hypertonic saline solution; and a first occluder attached to the flexible shaft proximal to the ablation electrode and proximal to the liquid outlet, wherein the first occluder is configured to expand to occlude the airway.
    Type: Application
    Filed: November 3, 2020
    Publication date: March 11, 2021
    Inventors: Dorin PANESCU, Shashank Raina, Mark Gelfand, Mark Leung, Simplicio Velilla
  • Publication number: 20210007796
    Abstract: A system for treatment of a target region of lung tissue including: a flow regulator configured to be interposed between a conductive fluid source and a conductive fluid outlet positionable at or in proximity of the target region of lung tissue, the flow regulator being further configured for controlling a flow rate or a bolus quantity of conductive fluid coming from the fluid source and delivered to the conductive fluid outlet; and a controller communicatively connectable with said flow regulator and with at least one sensor, with the at least one sensor being configured for detecting values taken by at least one control parameter representative of a physical property, wherein the physical property is one of temperature (T), pressure (p), electric impedance (Z), or electric conductivity (C) of material present at or in proximity of the target region of lung tissue.
    Type: Application
    Filed: July 24, 2019
    Publication date: January 14, 2021
    Inventors: Dorin PANESCU, Shashank Raina, Simplicio Velilla, Mark Gelfand, Mark Leung
  • Publication number: 20200405384
    Abstract: An apparatus (150) for ablating a tumor in a lung including: an elongate shaft (149); an obturator (152) positioned at a distal region of the elongate shaft, a suction lumen (166) extending through the elongate shaft and exiting the shaft distal to the obturator, wherein the suction lumen is configured to remove air or fluid from the portion of the lung, an ablation catheter delivery lumen (153) extending through the elongate shaft and exiting the shaft distal to the obturator, and an ablation catheter (155, 154) comprising an RF electrode (156, 157).
    Type: Application
    Filed: September 7, 2018
    Publication date: December 31, 2020
    Inventors: Dorin PANESCU, Mark GELFAND, Mark LEUNG
  • Patent number: 10842560
    Abstract: An ablation catheter configured to ablate tissue in a lung of a patient including: a flexible shaft that advances endobronchially into an airway of the lung and has an outer diameter of 2.0 mm or less; an ablation electrode attached to a distal portion of the flexible shaft and to deliver radiofrequency (RF) electrical current to the tissue and conductively connectable to an RF electrical energy source external to the patient; wherein an outer diameter of an assembly of the flexible shaft and the ablation electrode is no greater than 2.0 mm; a liquid outlet on the distal portion and configured to be in fluid communication with a source of hypertonic saline solution; and a first occluder attached to the flexible shaft proximal to the ablation electrode and proximal to the liquid outlet, wherein the first occluder is configured to expand to occlude the airway.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: November 24, 2020
    Assignee: Zidan Medical Inc.
    Inventors: Dorin Panescu, Shashank Raina, Mark Gelfand, Mark Leung, Simplicio Velilla
  • Patent number: 10610297
    Abstract: A device for treating spinal tissue of a patient's body may include an energy source and first and second probe assemblies. Each of the probe assemblies may have an electrically conductive energy delivery device electrically coupled to the energy source, and may also have an electrothermal device for cooling the probe assembly. The device is configured so that the energy source delivers energy to the spinal tissue through the energy delivery devices in a bipolar mode that concentrates delivered energy between the energy delivery devices to create a lesion within the spinal tissue while the electrothermal devices cool the probe assemblies. Related methods of use include cooling, at times via an electrothermal device.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: April 7, 2020
    Assignee: Avent, Inc.
    Inventors: Mark Leung, Krishan Shah, Laura Conquergood, Subashini Chandran, Neil Godara
  • Publication number: 20190343581
    Abstract: An ablation catheter configured to ablate tissue in a lung of a patient including: a flexible shaft that advances endobronchially into an airway of the lung and has an outer diameter of 2.0 mm or less; an ablation electrode attached to a distal portion of the flexible shaft and to deliver radiofrequency (RF) electrical current to the tissue and conductively connectable to an RF electrical energy source external to the patient; wherein an outer diameter of an assembly of the flexible shaft and the ablation electrode is no greater than 2.0 mm; a liquid outlet on the distal portion and configured to be in fluid communication with a source of hypertonic saline solution; and a first occluder attached to the flexible shaft proximal to the ablation electrode and proximal to the liquid outlet, wherein the first occluder is configured to expand to occlude the airway.
    Type: Application
    Filed: July 24, 2019
    Publication date: November 14, 2019
    Inventors: Dorin PANESCU, Shashank RAINA, Mark Gelfand, Mark LEUNG, Simplicio VELILLA
  • Publication number: 20170049554
    Abstract: A method and device to improve lung function in a patient having restricted ventilation. The device may include an implantable airway bypass device that relieves trapped air. The method may include a treatment procedure that minimizes irritation of tissue to control healing processes.
    Type: Application
    Filed: April 30, 2015
    Publication date: February 23, 2017
    Applicant: Soffio Medical Inc.
    Inventors: Jianmin LI, George BOURNE, Mark GELFAND, Howard LEVIN, Michael BARENBOYM, Ary CHERNOMORSKY, Benjamin David BELL, Gerhard Andrew FOELSCHE, Mark LEUNG
  • Publication number: 20170020606
    Abstract: A device for treating spinal tissue of a patient's body may include an energy source and first and second probe assemblies. Each of the probe assemblies may have an electrically conductive energy delivery device electrically coupled to the energy source, and may also have an electrothermal device for cooling the probe assembly. The device is configured so that the energy source delivers energy to the spinal tissue through the energy delivery devices in a bipolar mode that concentrates delivered energy between the energy delivery devices to create a lesion within the spinal tissue while the electrothermal devices cool the probe assemblies. Related methods of use include cooling, at times via an electrothermal device.
    Type: Application
    Filed: October 4, 2016
    Publication date: January 26, 2017
    Inventors: Mark Leung, Krishan Shah, Laura Conquergood, Subashini Chandran, Neil Godara
  • Patent number: 9474573
    Abstract: A device for treating spinal tissue of a patient's body may include an energy source and first and second probe assemblies. Each of the probe assemblies may have an electrically conductive energy delivery device electrically coupled to the energy source, and may also have an electrothermal device for cooling the probe assembly. The device is configured so that the energy source delivers energy to the spinal tissue through the energy delivery devices in a bipolar mode that concentrates delivered energy between the energy delivery devices to create a lesion within the spinal tissue while the electrothermal devices cool the probe assemblies. Related methods of use include cooling, at times via an electrothermal device.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: October 25, 2016
    Assignee: Avent, Inc.
    Inventors: Mark Leung, Krishan Shah, Laura Conquergood, Subashini Chandran, Neil Godara
  • Patent number: 9398930
    Abstract: Methods and percutaneous devices for assessing, and treating patients having sympathetically mediated disease, involving augmented peripheral chemoreflex and heightened sympathetic tone by reducing chemosensor input to the nervous system via percutaneous carotid body ablation.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: July 26, 2016
    Assignee: CIBIEM, INC.
    Inventors: Mark Leung, Brett Schleicher, Charles Lennox, Ary Chernomorsky, Zoar Jacob Engelman, Marat Fudim, Martin M. Grasse, Mark Gelfand, Howard Levin
  • Patent number: 8951249
    Abstract: An electrosurgical device comprising a means for impeding flow for delivering energy to a region of tissue is described. In addition, a method of treating the sacroiliac region of a patient's body by delivering energy is also described. The method includes the steps of inserting a probe into a target site within the sacroiliac region of a patient's body and delivering energy to the probe to treat tissue within the target site.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: February 10, 2015
    Assignee: Avent Inc.
    Inventors: Neil Godara, Wesley Dawkins, Taylor Hillier, Mark Leung
  • Patent number: 8882755
    Abstract: A novel medical probe assembly, system, and methods for the use thereof to treat tissue are described. The system optionally comprises an energy source, two probe assemblies, and one or more cooling devices to provide cooling to at least one of the probe assemblies. The probe assemblies may be configured in a bipolar mode, whereby current flows preferentially between the probe assemblies. The probe assemblies and system described herein are particularly useful to deliver radio frequency energy to a patient's body. RF energy delivery may be used for various applications, including the treatment of pain, tumor ablation and cardiac ablation.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: November 11, 2014
    Assignee: Kimberly-Clark Inc.
    Inventors: Mark Leung, Krishan Shah, Laura Conquergood, Subashini Chandran
  • Patent number: 8864759
    Abstract: Methods of treating the sacroiliac region of a patient's body by delivering energy are described. In some embodiments, the method comprises the steps of: inserting at least one probe into the sacroiliac region, the probe comprising at least one energy delivery device: positioning the at least one energy delivery device adjacent material to be treated; and delivering energy through the at least one energy delivery device to create a longitudinal strip lesion; wherein the at least one energy delivery device remains in a substantially static position during creation of the strip lesion. In some embodiments, energy may be delivered to treat at least two branches of the sacral nerves or to create an intra-articular lesion.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: October 21, 2014
    Assignee: Kimberly-Clark Inc.
    Inventors: Neil Godara, Wesley Dawkins, Taylor Hillier, Mark Leung
  • Patent number: 8740897
    Abstract: A device for treating spinal tissue of a patient's body may include an energy source and first and second probe assemblies. Each of the probe assemblies may have an electrically conductive energy delivery device electrically coupled to the energy source, and may also have an electrothermal device for cooling the probe assembly. The device is configured so that the energy source delivers energy to the spinal tissue through the energy delivery devices in a bipolar mode that concentrates delivered energy between the energy delivery devices to create a lesion within the spinal tissue while the electrothermal devices cool the probe assemblies. Related methods of use include cooling, at times via an electrothermal device.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: June 3, 2014
    Assignee: Kimberly-Clark, Inc.
    Inventors: Mark Leung, Krishan Shah, Laura Conquergood, Subashini Chandran, Neil Godara