Patents by Inventor Mark Pratt

Mark Pratt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11107554
    Abstract: The present disclosure provides methods and systems for accurate and efficient context-aware base calling of sequences. In an aspect, disclosed herein is a method for sequencing a nucleic acid molecule, comprising: (a) sequencing the nucleic acid molecule to generate a plurality of sequence signals; and (b) determining base calls of the nucleic acid molecule based at least in part on (i) the plurality of sequence signals and (ii) quantified context dependency for at least a portion of the plurality of sequence signals.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: August 31, 2021
    Assignee: ULTIMA GENOMICS, INC.
    Inventors: Mark Pratt, Gilad Almogy, Avishai Bartov
  • Patent number: 11080248
    Abstract: A biosensor is provided including a detection device and a flow cell mounted to the detection device. The detection device has a detector surface with a plurality of reaction sites. The detection device also includes a filter layer that is configured to at least one of (a) filter unwanted excitation light signals; (b) direct emission signals from a designated reaction site toward one or more associated light detectors that are configured to detect the emission signals from the designated reaction site; or (c) block or prevent detection of crosstalk emission signals from adjacent reaction sites.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: August 3, 2021
    Assignee: ILLUMINA, INC.
    Inventors: Helmy A. Eltoukhy, Robert C. Kain, Wenyi Feng, Mark Pratt, Bernard Hirschbein, Poorya Sabounchi, Tarun Khurana
  • Publication number: 20210199647
    Abstract: Provided are systems and methods for analyte detection and analysis. A system can comprise an open substrate. The open substrate may be configured to rotate or otherwise move. The open substrate can comprise an array of individually addressable locations, with analytes immobilized thereto. The substrate may be spatially indexed to identify nucleic acid molecules from one or more sources, and/or sequences thereof, with the respective one or more sources. A solution comprising a plurality of probes may be directed across the array to couple at least one of the plurality of probes with at least one of the analytes to form a bound probe. A detector can be configured to detect a signal from the bound probe via scanning of the substrate while minimizing temperature fluctuations of the substrate or optical aberrations caused by bubbles.
    Type: Application
    Filed: February 22, 2021
    Publication date: July 1, 2021
    Inventors: Nathan BECKETT, Gilad ALMOGY, Nathan CASWELL, Jacob A. WOLF, Kristopher BARBEE, Denis PRISTINSKI, Mark PRATT, Gene POLOVY, Osip SCHWARTZ, Stephanie KUBECKA, Steven MENCHEN, Joseph ANTHONY, Jose Martin SOSA, Phillip You Fai LEE
  • Publication number: 20210142869
    Abstract: The present disclosure provides methods and systems for accurate and efficient context-aware base calling of sequences. In an aspect, disclosed herein is a method for sequencing a nucleic acid molecule, comprising: (a) sequencing the nucleic acid molecule to generate a plurality of sequence signals; and (b) determining base calls of the nucleic acid molecule based at least in part on (i) the plurality of sequence signals and (ii) quantified context dependency for at least a portion of the plurality of sequence signals.
    Type: Application
    Filed: November 5, 2020
    Publication date: May 13, 2021
    Inventors: Mark PRATT, Gilad ALMOGY, Avishai BARTOV
  • Publication number: 20210079464
    Abstract: Provided are systems and methods for analyte detection and analysis. A system can comprise an open substrate. The open substrate may be configured to rotate or otherwise move. The open substrate can comprise an array of individually addressable locations, with analytes immobilized thereto. The substrate may be spatially indexed to identify nucleic acid molecules from one or more sources, and/or sequences thereof, with the respective one or more sources. A solution comprising a plurality of probes may be directed across the array to couple at least one of the plurality of probes with at least one of the analytes to form a bound probe. A detector can be configured to detect a signal from the bound probe via scanning of the substrate while minimizing temperature fluctuations of the substrate or optical aberrations caused by bubbles.
    Type: Application
    Filed: November 19, 2020
    Publication date: March 18, 2021
    Inventors: Nathan BECKETT, Gilad ALMOGY, Nathan CASWELL, Jacob A. WOLF, Kristopher BARBEE, Denis PRINTINSKI, Mark PRATT, Gene POLOVY, Osip SCHWARTZ, Stephanie KUBECKA, Steven MENCHEN, Joseph ANTHONY, Jose Martin SOSA, Phillip You Fai LEE
  • Publication number: 20210054442
    Abstract: Described herein are methods of generating a coupled sequencing read pair for a polynucleotide, and methods of analyzing the coupled sequencing read pair. The coupled sequencing read pair can be analyzed to detect polynucleotide variants, including at loci that are not directly sequenced within the coupled sequencing read pair. Other analytical methods can include using coupled sequencing read pairs to construct or validate a consensus sequence. The coupled sequencing read pair may be generated for a polynucleotide by generating sequencing data for a first region by extending a primer using labeled nucleotides; further extending the primer through a second region using nucleotides provided in a second region flow order, wherein primer extension through the second region is faster than primer extension through the first region; and generating sequencing data associated with a sequence of a third region of the polynucleotide by further extending the primer using labeled nucleotides.
    Type: Application
    Filed: October 30, 2020
    Publication date: February 25, 2021
    Applicant: Ultima Genomics, Inc.
    Inventors: Mark PRATT, Gilad ALMOGY, Dumitru BRINZA, Eliane TREPAGNIER, Omer BARAD, Yoav ETZIONI, Florian OBERSTRASS
  • Publication number: 20210040543
    Abstract: The present disclosure provides methods and systems for sequencing nucleic acid molecules in a manner that enables higher sequencing accuracy. Methods and systems provided herein may enable sequences that may have low-accuracy reads, such as homopolymer sequences or other repeating sequences, to be determined at a higher accuracy and efficiency.
    Type: Application
    Filed: July 23, 2020
    Publication date: February 11, 2021
    Inventors: Eliane TREPAGNIER, Mark PRATT, Theo NIKIFOROV, Gilad ALMOGY
  • Publication number: 20200392584
    Abstract: Described herein are methods, devices, and systems for measuring a level of a disease (such as cancer), for example a fraction of nucleic acid molecules (such as cell-free DNA) in a sample from an individual that relate to diseased tissue (such as cancer tissue). Also described are methods, devices, and systems for measuring a presence, recurrence, progression, or regression of the disease in the individual. Certain methods include comparing, using nucleic acid sequencing data associated with the individual, a signal indicative of a rate at which sequenced loci selected from a personalized disease-associated small nucleotide variant (SNV) locus panel are derived from a diseased tissue to a background factor indicative of a sequencing false positive error rate, or a noise factor indicative of a sampling variance, across the selected loci.
    Type: Application
    Filed: May 15, 2020
    Publication date: December 17, 2020
    Inventors: Gilad ALMOGY, Mark PRATT, Omer BARAD, Simchon FAIGLER, Florian OBERSTRASS
  • Publication number: 20200377937
    Abstract: Described herein are methods of generating a coupled sequencing read pair for a polynucleotide, and methods of analyzing the coupled sequencing read pair. The coupled sequencing read pair can be analyzed to detect polynucleotide variants, including at loci that are not directly sequenced within the coupled sequencing read pair. Other analytical methods can include using coupled sequencing read pairs to construct or validate a consensus sequence. The coupled sequencing read pair may be generated for a polynucleotide by generating sequencing data for a first region by extending a primer using labeled nucleotides; further extending the primer through a second region using nucleotides provided in a second region flow order, wherein primer extension through the second region is faster than primer extension through the first region; and generating sequencing data associated with a sequence of a third region of the polynucleotide by further extending the primer using labeled nucleotides.
    Type: Application
    Filed: May 1, 2020
    Publication date: December 3, 2020
    Inventors: Mark PRATT, Gilad ALMOGY, Dumitru BRINZA, Eliane TREPAGNIER, Omer BARAD, Yoav ETZIONI, Florian OBERSTRASS
  • Publication number: 20200372971
    Abstract: Methods for detecting a short genetic variant in a test sample are described herein. In some exemplary methods, the short genetic variant is called using one or match scores, which are determined using one or more sequencing data sets obtained from a test nucleic acid molecule, wherein the test sequencing data sets are determined by sequencing the test nucleic acid molecule using non-terminating nucleotides provided in separate nucleotide flows according to a flow-cycle order. Also described herein are methods of sequencing a test nucleic acid molecule using two or more different flow-cycle orders and/or extended flow cycle orders having five or more nucleotide flows per flow cycle.
    Type: Application
    Filed: May 1, 2020
    Publication date: November 26, 2020
    Inventors: Yoav ETZIONI, Simchon FAIGLER, Gilad ALMOGY, Mark PRATT, Florian OBERSTRASS
  • Publication number: 20200326327
    Abstract: Provided are systems and methods for analyte detection and analysis. A system can comprise an open substrate configured to rotate. The open substrate can comprise an array of immobilized analytes. A solution comprising a plurality of probes may be directed, via centrifugal force, across the array during rotation of the substrate, to couple at least one of the plurality of probes with at least one of the analytes to form a bound probe. A detector can be configured to detect a signal from the bound probe via continuous rotational area scanning of the substrate.
    Type: Application
    Filed: April 29, 2020
    Publication date: October 15, 2020
    Inventors: Kristopher BARBEE, Nathan BECKETT, Denis PRISTINSKI, Derek SCHULTE, Avishai BARTOV, Jamie SULLIVAN, Dumitru BRINZA, Abizar LAKDAWALLA, Steven MENCHEN, Gilad ALMOGY, Mark PRATT
  • Publication number: 20200308640
    Abstract: Recognized herein is the need for methods and processes for increasing the efficiency and accuracy of paired end sequencing.
    Type: Application
    Filed: April 7, 2020
    Publication date: October 1, 2020
    Inventors: Gilad Almogy, Mark Pratt, Florian Oberstrass
  • Publication number: 20200303039
    Abstract: The present disclosure provides methods and systems for accurate and efficient context-aware base calling of sequences. In an aspect, disclosed herein is a method for sequencing a nucleic acid molecule, comprising: (a) sequencing the nucleic acid molecule to generate a plurality of sequence signals; and (b) determining base calls of the nucleic acid molecule based at least in part on (i) the plurality of sequence signals and (ii) quantified context dependency for at least a portion of the plurality of sequence signals.
    Type: Application
    Filed: April 10, 2020
    Publication date: September 24, 2020
    Inventors: Mark PRATT, Gilad ALMOGY, Avishai BARTOV
  • Publication number: 20190302024
    Abstract: A system includes: an objective lens; a first light source to feed first illuminating light through the objective lens and into a flowcell (e.g., with a relatively thin film waveguide) to be installed in the system, the first illuminating light to be fed using a first grating on the flowcell; and a first image sensor to capture imaging light using the objective lens, wherein the first grating is positioned outside a field of view of the first image sensor. Dual-surface imaging can be performed. Flowcells with multiple swaths bounded by gratings can be used. An auto-alignment process can be performed.
    Type: Application
    Filed: March 12, 2019
    Publication date: October 3, 2019
    Inventors: Yinghua Sun, Stanley S. Hong, Frederick Erie, Alex Nemiroski, M. Shane Bowen, Danilo Condello, Dietrich Dehlinger, Marco A. Krumbuegel, Anthony Lam, Aaron Liu, Bojan Obradovic, Mark Pratt
  • Patent number: 10344328
    Abstract: Provided are methods for biological sample processing and analysis. A method can comprise providing a substrate configured to rotate. The substrate can comprise an array having immobilized thereto a biological analyte. A solution comprising a plurality of probes may be directed, via centrifugal force, across the substrate during rotation of the substrate, to couple at least one of the plurality of probes with the biological analyte. A detector can be configured to detect a signal from the at least one probe coupled to the biological analyte, thereby analyzing the biological analyte.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: July 9, 2019
    Assignee: ULTIMA GENOMICS, INC.
    Inventors: Kristopher Barbee, Nathan Beckett, Denis Pristinski, Derek Schulte, Avishai Bartov, Jamie Sullivan, Dumitru Brinza, Abizar Lakdawalla, Steven Menchen, Gilad Almogy, Mark Pratt
  • Publication number: 20190153531
    Abstract: Provided are methods for biological sample processing and analysis. A method can comprise providing a substrate configured to rotate. The substrate can comprise an array having immobilized thereto a biological analyte. A solution comprising a plurality of probes may be directed, via centrifugal force, across the substrate during rotation of the substrate, to couple at least one of the plurality of probes with the biological analyte. A detector can be configured to detect a signal from the at least one probe coupled to the biological analyte, thereby analyzing the biological analyte.
    Type: Application
    Filed: May 8, 2018
    Publication date: May 23, 2019
    Inventors: Kristopher BARBEE, Nathan BECKETT, Denis PRISTINSKI, Derek SCHULTE, Avishai BARTOV, Jamie SULLIVAN, Dumitru BRINZA, Abizar LAKDAWALLA, Steven MENCHEN, Gilad ALMOGY, Mark PRATT
  • Publication number: 20190153520
    Abstract: Provided are systems and methods for analyte detection and analysis. A system can comprise an open substrate configured to rotate. The open substrate can comprise an array of immobilized analytes. A solution comprising a plurality of probes may be directed, via centrifugal force, across the array during rotation of the substrate, to couple at least one of the plurality of probes with at least one of the analytes to form a bound probe. A detector can be configured to detect a signal from the bound probe via continuous rotational area scanning of the substrate.
    Type: Application
    Filed: May 8, 2018
    Publication date: May 23, 2019
    Inventors: Kristopher BARBEE, Nathan BECKETT, Denis PRISTINSKI, Derek SCHULTE, Avishai BARTOV, Jamie SULLIVAN, Dumitru BRINZA, Abizar LAKDAWALLA, Steven MENCHEN, Gilad ALMOGY, Mark PRATT
  • Patent number: 10273528
    Abstract: Provided are systems and methods for analyte detection and analysis. A system can comprise an open substrate configured to rotate. The open substrate can comprise an array of immobilized analytes. A solution comprising a plurality of probes may be directed, via centrifugal force, across the array during rotation of the substrate, to couple at least one of the plurality of probes with at least one of the analytes to form a bound probe. A detector can be configured to detect a signal from the bound probe via continuous rotational area scanning of the substrate.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: April 30, 2019
    Assignee: ULTIMA GENOMICS, INC.
    Inventors: Kristopher Barbee, Nathan Beckett, Denis Pristinski, Derek Schulte, Avishai Bartov, Jamie Sullivan, Dumitru Brinza, Abizar Lakdawalla, Steven Menchen, Gilad Almogy, Mark Pratt
  • Patent number: 10267790
    Abstract: Provided are systems for biological sample processing and analysis. A system can comprise a substrate configured to rotate. The substrate can comprise an array configured to immobilize a biological analyte. A fluid flow unit comprising a fluid channel can be configured to dispense a solution comprising a plurality of probes. The solution may be directed, via centrifugal force, across the substrate during rotation of the substrate, to couple at least one of the plurality of probes with the biological analyte. A detector in optical communication with the array can be configured to detect one or more signals from the at least one probe coupled to the biological analyte.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: April 23, 2019
    Assignee: ULTIMA GENOMICS, INC.
    Inventors: Kristopher Barbee, Nathan Beckett, Denis Pristinski, Derek Schulte, Avishai Bartov, Jamie Sullivan, Dumitru Brinza, Abizar Lakdawalla, Steven Menchen, Gilad Almogy, Mark Pratt
  • Publication number: 20190114842
    Abstract: A central monitoring station is linked to a plurality of remote terminals, such as payment terminals at a plurality of parking facilities. A two-way communication system enables communication between a customer who is remote from the central monitoring station and an attendant at the central monitoring station. The communication system may also allow the attendant to manipulate each remote terminal to collect data or troubleshoot or override the function of the terminal.
    Type: Application
    Filed: October 15, 2018
    Publication date: April 18, 2019
    Inventors: Mark Pratt, David Harpold