Patents by Inventor Mark Shost

Mark Shost has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9399963
    Abstract: A variety of methods and arrangements for detecting misfire in a skip fire engine control system are described. In one aspect, a window is assigned to a target firing opportunity for a target working chamber. A change in an engine parameter is measured during the window. A determination is made as to whether a firing opportunity before the target firing opportunity is a skip or a fire and/or whether a firing opportunity after the target firing opportunity is a skip or a fire. Based at least in part on this skip/fire determination, a determination is made as to whether the target working chamber has misfired. In various embodiments, if the target working chamber is identified as persistently misfiring, the firing sequence is modified so that the target working chamber is deactivated and excluded from the firing sequence. In still other embodiments, a torque model is used to detect engine-related problems.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: July 26, 2016
    Assignee: Tula Technology, Inc.
    Inventors: Charles H. Loucks, Joel D. Van Ess, Siamak Hashemi, Louis J. Serrano, Mohammad R. Pirjaberi, Shikui Kevin Chen, Matthew A. Younkins, Mark A. Shost, Mark A. Wilcutts
  • Patent number: 9387849
    Abstract: A variety of methods and arrangements for implementing a start/stop feature in a skip fire engine control system are described. In one aspect, the implementation of the start/stop feature involves automatically turning off an internal combustion engine under selected circumstances during a drive cycle. A determination is made that the engine should be restarted. During the engine startup period, the engine is operated in a skip fire manner such that a desired engine speed is reached.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: July 12, 2016
    Assignee: Tula Technology, Inc.
    Inventors: Ihab S. Soliman, Mark A. Shost
  • Publication number: 20160061127
    Abstract: Methods and devices are described for performing engine diagnostics during skip fire operation of an engine while a vehicle is being driven. Knowledge of the firing sequence is used to determine appropriate times to conduct selected diagnostics and/or to help better interpret sensor inputs or diagnostic results. In one aspect, selected diagnostics are executed when a single cylinder is fired a plurality of times in isolation relative to a sensor used in the diagnosis. In another aspect, selected diagnostics are conducted while the engine is operated using a firing sequence that insures that no cylinders in a first cylinder bank are fired for a plurality of engine cycles while cylinders in a second bank are at least sometimes fired. The described tests can be conducted opportunistically, when conditions are appropriate, or specific firing sequences can be commanded to achieve the desired isolation or skipping of one or more selected cylinders.
    Type: Application
    Filed: November 12, 2015
    Publication date: March 3, 2016
    Inventors: Shikui Kevin CHEN, Xin YUAN, Joshua P. SWITKES, Steven E. CARLSON, Mark A. SHOST
  • Publication number: 20150367830
    Abstract: A variety of methods and arrangements for implementing a start/stop feature in a skip fire engine control system are described. In one aspect, the implementation of the start/stop feature involves automatically turning off an internal combustion engine under selected circumstances during a drive cycle. A determination is made that the engine should be restarted. During the engine startup period, the engine is operated in a skip fire manner such that a desired engine speed is reached.
    Type: Application
    Filed: June 18, 2015
    Publication date: December 24, 2015
    Inventors: Ihab S. SOLIMAN, Mark A. SHOST
  • Publication number: 20150369141
    Abstract: A variety of methods and arrangements for implementing a start/stop feature in a skip fire engine control system are described. In one aspect, the implementation of the start/stop feature involves automatically turning off an internal combustion engine under selected circumstances during a drive cycle. A determination is made that the engine should be restarted. During the engine startup period, the engine is operated in a skip fire manner such that a desired engine speed is reached.
    Type: Application
    Filed: June 18, 2015
    Publication date: December 24, 2015
    Inventors: Ihab S. SOLIMAN, Mark A. SHOST, Truc Trung LE, Joseph B. ADAMS
  • Patent number: 9212610
    Abstract: Methods and devices are described for performing engine diagnostics during skip fire operation of an engine while a vehicle is being driven. Knowledge of the firing sequence is used to determine appropriate times to conduct selected diagnostics and/or to help better interpret sensor inputs or diagnostic results. In one aspect, selected diagnostics are executed when a single cylinder is fired a plurality of times in isolation relative to a sensor used in the diagnosis. In another aspect, selected diagnostics are conducted while the engine is operated using a firing sequence that insures that no cylinders in a first cylinder bank are fired for a plurality of engine cycles while cylinders in a second bank are at least sometimes fired. The described tests can be conducted opportunistically, when conditions are appropriate, or specific firing sequences can be commanded to achieve the desired isolation or skipping of one or more selected cylinders.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: December 15, 2015
    Assignee: Tula Technology, Inc.
    Inventors: Shikui Kevin Chen, Xin Yuan, Joshua P. Switkes, Steven E. Carlson, Mark A. Shost
  • Patent number: 9200575
    Abstract: Various methods and data structures for managing transition between different firing fractions during skip fire operation of an engine are described. In some embodiments, transitions are constrained to occur when firing sequence segments of a designated length are shared by the first and second firing fractions. In a separate aspect, a data structure that uses current firing fraction phase as a first index and a target firing fraction as a second index may be used to determine a phase of the target firing fraction to enter at a transition. Is some circumstances transitions between a current and target firing fraction may be conducted as a series of steps through intermediate firing fractions.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: December 1, 2015
    Assignee: Tula Technology, Inc.
    Inventor: Mark A. Shost
  • Publication number: 20150322869
    Abstract: An internal combustion engine capable of cylinder deactivation or skip fire control in combination with variable valve lift control. One bank of cylinders can be deactivated while the air induction of the other bank of cylinders is regulated using variable valve lift control to increase engine efficiency. An internal combustion engine with two cylinder banks, where control of one cylinder bank using skip fire control can be operating at an appropriate firing fraction in combination with variable valve lift control on the other cylinder bank. A single bank of cylinders can be controlled in a skip fire manner in conjunction with variable valve lift control.
    Type: Application
    Filed: May 6, 2015
    Publication date: November 12, 2015
    Inventors: Mark A. SHOST, Matthew A. YOUNKINS
  • Publication number: 20150260117
    Abstract: In one aspect, a skip fire engine controller is described. The skip fire engine controller includes a skip fire module arranged to determine an operational firing fraction and associated cylinder load for delivering a desired engine output. The skip fire engine controller also includes a firing controller arranged to direct firings in a skip fire manner that delivers the selected operational firing fraction. Various methods, modules, lookup tables and arrangements related to the selection of a suitable operational firing fraction are also described.
    Type: Application
    Filed: March 4, 2015
    Publication date: September 17, 2015
    Inventors: Mark A. SHOST, Louis J. SERRANO, Steven E. CARLSON, Vijay SRINIVASAN, Eric J. DEFENDERFER, Nitish J. WAGH, Randall S. BEIKMANN, Jinbiao LI, Xin YUAN, Li-Chun CHIEN
  • Publication number: 20150100221
    Abstract: In one aspect, a system for reducing noise or vibration generated by an internal combustion engine is described. An engine controller is arranged to generate firing information suitable for operating the working chambers of the engine in a skip fire manner to deliver a desired amount of torque. A noise/vibration reduction unit is arranged to help reduce noise or vibration based on the firing information. The noise/vibration controller actively controls a device that is not a part of the engine to alter an NVH characteristic of the vehicle in a desired manner based at least in part on a skip fire characteristic.
    Type: Application
    Filed: October 8, 2014
    Publication date: April 9, 2015
    Inventors: Geoffrey ROUTLEDGE, Mark A. SHOST, Biswa R. GHOSH, Louis J. SERRANO, Mark WILCUTTS
  • Patent number: 8892330
    Abstract: A variety of methods and arrangements for operating an internal combustion engine and one or more motor/generators in a hybrid vehicle are described. Generally, the engine is operated in a variable displacement or skip fire mode. Depending on the state of charge of an energy storage device and/or other factors, the engine is operated to generate more or less than a desired level of torque. The one or more motor/generators are used to add or subtract torque so that the motor/generator(s) and the engine collectively deliver the desired level of torque. In some embodiments, the engine may be run with a substantially open throttle to reduce pumping losses and improve fuel efficiency.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: November 18, 2014
    Assignee: Tula Technology, Inc.
    Inventors: Ronald D. Yuille, Mark A. Shost, Louis J. Serrano, John W. Parsels, Matthew A. Younkins
  • Patent number: 8880258
    Abstract: Methods and arrangements for controlling hybrid powertrains are described. In one aspect, an engine is alternatingly operated at different effective displacements. One displacement delivers less than a requested powertrain output and the other delivers more. A motor/generator system is used to add and subtract torque to/from the powertrain to cause the net delivery of the requested powertrain output. In some embodiments, energy added and subtracted from the powertrain is primarily drawn from and stored in a capacitor (e.g., a supercapacitor or an ultracapacitor) when alternating between effective displacements. In another aspect a hybrid powertrain arrangement includes an engine a motor/generator and an energy storage system that includes both a battery and a capacitor. The capacitor stores and delivers electrical energy to the motor/generator unit during operation of the engine in a variable displacement or skip fire mode.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: November 4, 2014
    Assignee: Tula Technology, Inc.
    Inventors: Leo G. Breton, Ronald D. Yuille, Mark A. Shost, Louis J. Serrano, John W. Parsels, Matthew A. Younkins
  • Publication number: 20140261317
    Abstract: A variety of methods and arrangements for detecting misfire in a skip fire engine control system are described. In one aspect, a window is assigned to a target firing opportunity for a target working chamber. A change in an engine parameter is measured during the window. A determination is made as to whether a firing opportunity before the target firing opportunity is a skip or a fire and/or whether a firing opportunity after the target firing opportunity is a skip or a fire. Based at least in part on this skip/fire determination, a determination is made as to whether the target working chamber has misfired. In various embodiments, if the target working chamber is identified as persistently misfiring, the firing sequence is modified so that the target working chamber is deactivated and excluded from the firing sequence. In still other embodiments, a torque model is used to detect engine-related problems.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Inventors: Charles H. LOUCKS, Joel D. VAN ESS, Siamak HASHEMI, Louis J. SERRANO, Mohammad R. PIRJABERI, Shikui Kevin CHEN, Matthew A. YOUNKINS, Mark A. SHOST, Mark A. WILCUTTS
  • Publication number: 20140261316
    Abstract: Various methods and data structures for managing transition between different firing fractions during skip fire operation of an engine are described. In some embodiments, transitions are constrained to occur when firing sequence segments of a designated length are shared by the first and second firing fractions. In a separate aspect, a data structure that uses current firing fraction phase as a first index and a target firing fraction as a second index may be used to determine a phase of the target firing fraction to enter at a transition. Is some circumstances transitions between a current and target firing fraction may be conducted as a series of steps through intermediate firing fractions.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 18, 2014
    Inventor: Mark A. SHOST
  • Publication number: 20140261309
    Abstract: Methods and devices are described for performing engine diagnostics during skip fire operation of an engine while a vehicle is being driven. Knowledge of the firing sequence is used to determine appropriate times to conduct selected diagnostics and/or to help better interpret sensor inputs or diagnostic results. In one aspect, selected diagnostics are executed when a single cylinder is fired a plurality of times in isolation relative to a sensor used in the diagnosis. In another aspect, selected diagnostics are conducted while the engine is operated using a firing sequence that insures that no cylinders in a first cylinder bank are fired for a plurality of engine cycles while cylinders in a second bank are at least sometimes fired. The described tests can be conducted opportunistically, when conditions are appropriate, or specific firing sequences can be commanded to achieve the desired isolation or skipping of one or more selected cylinders.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Inventors: Shikui Kevin CHEN, Xin YUAN, Joshua P. SWITKES, Steven E. CARLSON, Mark A. SHOST
  • Patent number: 8464690
    Abstract: A variety of methods and arrangements for operating an internal combustion engine and one or more motor/generators in a hybrid vehicle are described. In various embodiments, the engine is operated in a skip fire mode. Depending on the state of charge of an energy storage device and/or other factors, the engine is operated to generate more or less than a desired level of torque. The one or more motor/generators are used to add or subtract torque so that the motor/generator(s) and the engine collectively deliver the desired level of torque. In some embodiments, the engine may be run with a substantially open throttle to reduce pumping losses and improve fuel efficiency.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: June 18, 2013
    Assignee: Tula Technology, Inc.
    Inventors: Ronald D. Yuille, Mark A. Shost, Louis J. Serrano, Adya S. Tripathi
  • Patent number: 7800379
    Abstract: A sensing apparatus for determining a property of a fuel such as a gasoline and ethanol blend known as flex fuel includes an acetal plastic tube with an inlet, an outlet and a fuel passage in between. One property of the fuel is a dielectric constant. A pair of sensing plates are placed on opposite sides of the tube leaving the fuel passage unobstructed. A processing circuit on a printed circuit board (PCB) is located near to and is connected with the sensing plates. The circuit applies an excitation signal, senses a capacitance, and generates an output signal indicative of a property of the fuel. The sensed capacitance will increase with increasing concentration of ethanol in the fuel flowing through the passage. A shield for reducing EMI surrounds and encloses the sensing plates and the PCB. An interface connector allows the sensing apparatus to output the capacitance indicative signal to an engine controller or the like.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: September 21, 2010
    Assignee: Delphi Technologies, Inc.
    Inventors: Norberto Hernandez, Jesus Carmona, Esau Aguinaga, Manuel S. Sanchez, Cecilia Hernandez, Daniel J. Moreno, Mark Shost
  • Publication number: 20100101215
    Abstract: An exhaust gas treatment system includes a selective catalytic reduction (SCR) catalyst and a dosing control responsive to exhaust gas operating conditions for controlling the dosing rate of a reductant such as aqueous urea into the exhaust stream. The dosing control is configured to reduce the dosing rate when either a sudden increase in the exhaust mass air flow is detected or when an exhaust gas temperature gradient is in an increasing state. The dosing control is also configured to shut-off dosing when a measured ammonia concentration level exceeds an ammonia slip trip level, provided that the exhaust gas temperature gradient is also in an increasing state.
    Type: Application
    Filed: December 4, 2008
    Publication date: April 29, 2010
    Inventors: Ming-Cheng Wu, Andrew D. Herman, Mark Shost
  • Publication number: 20090153154
    Abstract: A sensing apparatus for determining a property of a fuel such as a gasoline and ethanol blend known as flex fuel includes an acetal plastic tube with an inlet, an outlet and a fuel passage in between. One property of the fuel is a dielectric constant. A pair of sensing plates are placed on opposite sides of the tube leaving the fuel passage unobstructed. A processing circuit on a printed circuit board (PCB) is located near to and is connected with the sensing plates. The circuit applies an excitation signal, senses a capacitance, and generates an output signal indicative of a property of the fuel. The sensed capacitance will increase with increasing concentration of ethanol in the fuel flowing through the passage. A shield for reducing EMI surrounds and encloses the sensing plates and the PCB. An interface connector allows the sensing apparatus to output the capacitance indicative signal to an engine controller or the like.
    Type: Application
    Filed: December 2, 2008
    Publication date: June 18, 2009
    Inventors: Norberto Hernandez, Jesus Carmona, Esau Aguinaga, Manuel S. Sanchez, Cecilia Hernandez, Daniel J. Moreno, Mark Shost
  • Publication number: 20090133383
    Abstract: An improved SCR system for controlling NOx levels in internal combustion engine exhaust, comprising a least one ammonia sensor disposed at an intermediate longitudinal location in an SCR catalyst and in communication with a System Control Module (SCM). The ammonia measurement permits calculation of ammonia storage on catalyst sites via a stored SCM algorithm. Locating the ammonia sensor midway in the catalyst allows for optimum control of NOx reduction and permits the portion of the catalyst downstream of the sensor to be treated as a slip catalyst, thus minimizing or eliminating the need for a second slip catalyst and housing, and reducing the size, volume, complexity, and cost of an SCR system. In-brick ammonia sensor permits the system to manage engine exhaust to a desired NOx conversion level and ammonia slip target value, thus minimizing the rate of consumption of ammonia while meeting required limits for NOx emissions.
    Type: Application
    Filed: November 28, 2007
    Publication date: May 28, 2009
    Inventor: Mark A. Shost