Patents by Inventor Mark Visokay

Mark Visokay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050136679
    Abstract: The present invention pertains to forming a transistor in the absence of hydrogen, or in the presence of a significantly reduced amount of hydrogen. In this manner, a high-k material can be utilized to form a gate dielectric layer in the transistor and facilitate device scaling while mitigating defects that can be introduced into the high-k material by the presence of hydrogen and/or hydrogen containing compounds.
    Type: Application
    Filed: December 22, 2003
    Publication date: June 23, 2005
    Inventors: Luigi Colombo, James Chambers, Mark Visokay
  • Publication number: 20050130442
    Abstract: Methods are disclosed for treating deposited gate dielectric materials, in which the deposited dielectric is subjected to one or more non-oxidizing anneals to densify the material, one or more oxidizing anneals to mitigate material defects, and to a nitridation process to introduce nitrogen into the gate dielectric. The annealing may be performed before and/or after the nitridation to mitigate deposition and/or nitridation defects and to densify the material while mitigating formation of unwanted low dielectric constant oxides at the interface between the gate dielectric and the semiconductor substrate.
    Type: Application
    Filed: December 11, 2003
    Publication date: June 16, 2005
    Inventors: Mark Visokay, Luigi Colombo, James Chambers, Antonio Rotondaro, Haowen Bu
  • Publication number: 20050124109
    Abstract: A system and method for manufacturing semiconductor devices with dielectric layers having a dielectric constant greater than silicon dioxide includes depositing a dielectric layer on a substrate and subjecting the dielectric layer to a plasma to reduce top surface roughness in the dielectric layer.
    Type: Application
    Filed: December 3, 2003
    Publication date: June 9, 2005
    Inventors: Manuel Quevedo-Lopez, James Chambers, Luigi Colombo, Mark Visokay
  • Publication number: 20050124121
    Abstract: The present invention pertains to annealing a high dielectric constant (high-k) material in a manner that substantially reduces or eliminates disadvantages and problems heretofore associated with the same. In particular, the high-k material is annealed in an ambient having a single chemistry of nitrogen and hydrogen, such as ammonia (NH3), to nitride and react unwanted impurities, and an oxidizer to oxidize and densify the high-k material, while mitigating growth of a lower-k material at an interface of the high-k material and an underlying substrate. Additionally, particular temperatures and pressures are utilized within the process so that the risk of an undesired exothermic reaction is mitigated. Annealing the high-k material in accordance with manners disclosed herein has application to semiconductor fabrication processes and, as such, is discussed herein within the context of the same.
    Type: Application
    Filed: December 9, 2003
    Publication date: June 9, 2005
    Inventors: Antonio Rotondaro, James Chambers, Mark Visokay, Luigi Colombo
  • Patent number: 6902939
    Abstract: A via etch to contact a capacitor with ferroelectric between electrodes together with dielectric on an insulating diffusion barrier includes two-step etch with F-based dielectric etch and Cl- and F-based barrier etch.
    Type: Grant
    Filed: August 19, 2002
    Date of Patent: June 7, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Theodore S. Moise, Guoqiang Xing, Mark Visokay, Justin F. Gaynor, Stephen R. Gilbert, Francis Celii, Scott R. Summerfelt, Luigi Colombo
  • Publication number: 20050098833
    Abstract: An embodiment of the invention is a gate electrode 70 having a nitrided high work function metal alloy 170 and a low work function nitrided metal alloy 190. Another embodiment of the invention is a method of manufacturing a gate electrode 70 that includes forming and then patterning and etching a layer of high work function nitrided metal alloy 170, forming a layer of low work function nitrided metal alloy 190, and then patterning and etching layers 170 and 190.
    Type: Application
    Filed: December 2, 2004
    Publication date: May 12, 2005
    Inventor: Mark Visokay
  • Publication number: 20050101145
    Abstract: Fabricating a semiconductor includes depositing a metal layer outwardly from a dielectric layer and forming a mask layer outwardly from a first portion of the metal layer. Atoms are incorporated into an exposed second portion of the metal layer to form a composition-altered portion of the metal layer. The mask layer is removed from the first portion of the metal layer and a barrier layer is deposited outwardly from the metal layer. A poly-Si layer is deposited outwardly from the barrier layer to form a semiconductor layer, where the barrier layer substantially prevents reaction of the metal layer with the poly-Si layer. The semiconductor layer is etched to form gate stacks, where each gate stack operates according to one of a plurality of work functions.
    Type: Application
    Filed: November 6, 2003
    Publication date: May 12, 2005
    Inventors: Mark Visokay, Luigi Colombo
  • Publication number: 20050095764
    Abstract: Fabrication methods are presented in which a semiconductor body is deposited in a cavity of a temporary form structure above a semiconductor starting structure. The formed semiconductor body can be epitaxial silicon deposited in the form cavity over a silicon substrate, and includes three body portions, two of which are doped to form source/drains, and the other forming a transistor channel that overlies the starting structure. A gate structure is formed along one or more sides of the channel body portion to create a MOS transistor.
    Type: Application
    Filed: October 29, 2003
    Publication date: May 5, 2005
    Inventors: James Chambers, Mark Visokay
  • Publication number: 20050079655
    Abstract: A semiconductor device includes offset spacers that contact opposing side surfaces of a gate of a gate structure. The offset spacers can be formed by selectively depositing an oxide layer over the gate and the semiconductor substrate so that the opposing side surfaces of the gate e are substantially free of the oxide layer. Offset spacers can then be formed that contact the opposing side surfaces of the gate.
    Type: Application
    Filed: October 8, 2003
    Publication date: April 14, 2005
    Inventors: Yuanning Chen, Mark Visokay
  • Publication number: 20050066895
    Abstract: A method and system for performing metal-organic chemical vapor deposition (MOCVD). The method introduces a metal-organic compound into the CVD chamber in the presence of a first reactant selected to have a reducing chemistry and then, subsequently, a second reactant selected to have an oxidizing chemistry. The reducing chemistry results in deposition of metal species having a reduced surface mobility creating more uniform coverage and better adhesion. The oxidizing species results in deposition of metal species having a greater surface mobility leading to greater surface agglomeration and faster growth. By alternating the two reacts, faster growth is achieved and uniformity of the metal structure is enhanced.
    Type: Application
    Filed: November 18, 2004
    Publication date: March 31, 2005
    Inventors: Weimin Li, Mark Visokay
  • Publication number: 20050070062
    Abstract: Semiconductor devices and fabrication methods are presented, in which transistor gate structures are created using doped metal silicide materials. Upper and lower metal silicides are formed above a gate dielectric, wherein the lower metal silicide is doped with n-type impurities for NMOS gates and with p-type impurities for PMOS gates, and wherein a silicon may, but need not be formed between the upper and lower metal silicides. The lower metal silicide can be deposited directly, or may be formed through reaction of deposited metal and poly-silicon, and the lower silicide can be doped by diffusion or implantation, before or after gate patterning.
    Type: Application
    Filed: September 30, 2003
    Publication date: March 31, 2005
    Inventors: Mark Visokay, Luigi Colombo
  • Patent number: 6869877
    Abstract: A capacitor for a memory device is formed with a conductive oxide for a bottom electrode. The conductive oxide (RuOx) is deposited under low temperatures as an amorphous film. As a result, the film is conformally deposited over a three dimensional, folding structure. Furthermore, a subsequent polishing step is easily performed on the amorphous film, increasing wafer throughput. After deposition and polishing, the film is crystallized in a non-oxidizing ambient.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: March 22, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Howard E. Rhodes, Mark Visokay, Tom Graettinger, Dan Gealy, Gurtej Sandhu, Cem Basceri, Steve Cummings
  • Publication number: 20050059198
    Abstract: Semiconductor devices and fabrication methods are provided, in which metal transistor gates are provided for MOS transistors. Metal boride is formed above a gate dielectric to create PMOS gate structures and metal nitride is formed over a gate dielectric to provide NMOS gate structures. The metal portions of the gate structures are formed from an initial starting material that is either a metal boride or a metal nitride, after which the starting material is provided with boron or nitrogen in one of the PMOS and NMOS regions through implantation, diffusion, or other techniques, either before or after formation of the conductive upper material, and before or after gate patterning. The change in the boron or nitrogen content of the starting material provides adjustment of the material work function, thereby tuning the threshold voltage of the resulting PMOS or NMOS transistors.
    Type: Application
    Filed: September 12, 2003
    Publication date: March 17, 2005
    Inventors: Mark Visokay, Luigi Colombo, James Chambers
  • Publication number: 20050035417
    Abstract: An embodiment of the invention is a gate electrode 70 having a nitrided high work function metal alloy 170 and a low work function nitrided metal alloy 190. Another embodiment of the invention is a method of manufacturing a gate electrode 70 that includes forming and then patterning and etching a layer of high work function nitrided metal alloy 170, forming a layer of low work function nitrided metal alloy 190, and then patterning and etching layers 170 and 190.
    Type: Application
    Filed: June 16, 2004
    Publication date: February 17, 2005
    Inventor: Mark Visokay
  • Publication number: 20050023623
    Abstract: A MOSFET structure with high-k gate dielectrics for silicon or metal gates with gate dielectric liquid-based oxidation surface treatments prior to gate material deposition and gate formation.
    Type: Application
    Filed: August 27, 2004
    Publication date: February 3, 2005
    Inventors: Mark Visokay, Antonio Rotondaro, Luigi Colombo
  • Publication number: 20050006711
    Abstract: A method is provided for forming dual work function gate electrodes. A dielectric layer is provided outwardly of a substrate. A metal layer is formed outwardly of the dielectric layer. A silicon-germanium layer is formed outwardly of the metal layer. A first portion of the silicon-germanium layer is removed to expose a first portion of the metal layer, with a second portion of the silicon-germanium layer remaining over a second portion of the metal layer. A silicon-germanium metal compound layer is formed from the second portion of the silicon-germanium layer and the second portion of the metal layer. A first gate electrode comprising the first portion of the metal layer is formed. A second gate electrode comprising the silicon-germanium metal compound layer is formed.
    Type: Application
    Filed: August 4, 2004
    Publication date: January 13, 2005
    Inventors: Antonio Rotondaro, Mark Visokay
  • Patent number: 6833576
    Abstract: Capacitors having increased capacitance include an enhanced-surface-area (rough-surfaced) electrically conductive layer or other layers that are compatible with the high-dielectric constant materials. In one approach, an enhanced-surface-area electrically conductive layer for such capacitors is formed by processing a ruthenium oxide layer at high temperature at or above 500° C. and low pressure 75 torr or below, most desirably 5 torr or below, to produce a roughened ruthenium layer having a textured surface with a mean feature size of at least about 100 Angstroms. The initial ruthenium oxide layer may be provided by chemical vapor deposition techniques or sputtering techniques or the like. The layer may be formed over an underlying electrically conductive layer. The processing may be performed in an inert ambient or in a reducing ambient.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: December 21, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Vishnu K. Agarwal, Garo Derderian, Gurtej S. Sandhu, Weimin M. Li, Mark Visokay, Cem Basceri, Sam Yang
  • Patent number: 6828200
    Abstract: The present invention forms a nitrided dielectric layer without substantial harm to a semiconductor layer on which the dielectric layer is formed. The invention employs a multi-stage process in which dielectric sub-layers are individually nitrided before formation of a next dielectric sub-layer. The net result is a nitrided multi-layered dielectric layer comprised of a plurality of dielectric sub-layers wherein the sub-layers have been individually deposited and incorporated with nitrogen.
    Type: Grant
    Filed: January 3, 2003
    Date of Patent: December 7, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: James Joseph Chambers, Mark Visokay, Luigi Colombo
  • Publication number: 20040217409
    Abstract: An enhanced-surface-area conductive layer compatible with high-dielectric constant materials is created by forming a film or layer having at least two phases, at least one of which is electrically conductive. The film may be formed in any convenient manner, such as by chemical vapor deposition techniques, which may be followed by an anneal to better define and/or crystallize the at least two phases. The film may be formed over an underlying conductive layer. At least one of the at least two phases is selectively removed from the film, such as by an etch process that preferentially etches at least one of the at least two phases so as to leave at least a portion of the electrically conductive phase. Ruthenium and ruthenium oxide, both conductive, may be used for the two or more phases. Iridium and its oxide, rhodium and its oxide, and platinum and platinum-rhodium may also be used. A wet etchant comprising ceric ammonium nitrate and acetic acid may be used.
    Type: Application
    Filed: June 2, 2004
    Publication date: November 4, 2004
    Applicant: Micron Technology, Inc.
    Inventors: Cem Basceri, Mark Visokay, Thomas M. Graettinger, Steven D. Cummings
  • Patent number: 6812112
    Abstract: An enhanced-surface-area conductive layer compatible with high-dielectric constant materials is created by forming a film or layer having at least two phases, at least one of which is electrically conductive. The film may be formed in any convenient manner, such as by chemical vapor deposition techniques, which may be followed by an anneal to better define and/or crystallize the at least two phases. The film may be formed over an underlying conductive layer. At least one of the at least two phases is selectively removed from the film, such as by an etch process that preferentially etches at least one of the at least two phases so as to leave at least a portion of the electrically conductive phase. Ruthenium and ruthenium oxide, both conductive, may be used for the two or more phases. Iridium and its oxide, rhodium and its oxide, and platinum and platinum-rhodium may also be used. A wet etchant comprising ceric ammonium nitrate and acetic acid may be used.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: November 2, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Mark Visokay, Thomas M. Graettinger, Steven D. Cummings