Patents by Inventor Mark W. Verbrugge

Mark W. Verbrugge has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10907981
    Abstract: A vehicle includes an electric motor and a battery operable to provide electrical power to the electric motor. The battery system includes a first battery pack and a second battery pack. The first battery pack has a relatively high power density, and the second battery pack has a relatively high energy density. An electronic controller determines a remaining driving range of the first battery pack, and a remaining driving range of the second battery pack. The vehicle has a human-machine interface (HMI) operatively connected to the electronic controller and configured to indicate the remaining driving range of the first battery pack and the remaining driving range of the second battery pack. The controller executes a method of monitoring the battery system.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: February 2, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: Wei Li, Mark W. Verbrugge
  • Publication number: 20210028481
    Abstract: A bipolar battery may comprise first, second, and third bipolar electrodes that are physically and electrically isolated from one another by intervening non-liquid electrolyte layers. Each of the bipolar electrodes may comprise a bipolar current collector including a first electroactive material layer connected to a first side thereof and a second electroactive material layer connected to a second side thereof. Each electroactive material layer may comprise at least one of: (i) a lithium ion battery positive electrode material, (ii) a lithium ion battery negative electrode material, and/or (iii) a capacitor electrode material. At least one of the electroactive material layers comprises a capacitor electrode material.
    Type: Application
    Filed: July 26, 2019
    Publication date: January 28, 2021
    Inventors: Mengyan Hou, Haijing Liu, Mark W. Verbrugge, Qili Su, Meiyuan Wu
  • Publication number: 20210025723
    Abstract: A vehicle includes an electric motor and a battery operable to provide electrical power to the electric motor. The battery system includes a first battery pack and a second battery pack. The first battery pack has a relatively high power density, and the second battery pack has a relatively high energy density. An electronic controller determines a remaining driving range of the first battery pack, and a remaining driving range of the second battery pack. The vehicle has a human-machine interface (HMI) operatively connected to the electronic controller and configured to indicate the remaining driving range of the first battery pack and the remaining driving range of the second battery pack. The controller executes a method of monitoring the battery system.
    Type: Application
    Filed: October 14, 2020
    Publication date: January 28, 2021
    Applicant: GM Global Technology Operations LLC
    Inventors: Wei Li, Mark W. Verbrugge
  • Patent number: 10903491
    Abstract: A rechargeable lithium-ion battery disclosed herein comprises a positive electrode with a positive electroactive material that in a charged state comprises lithium iron (II) orthosilicate (Li2FeSiO4) and in a discharged state comprises FeSiO4 or LiFeSiO4. A negative electrode comprises phosphorene. A separator is disposed between the positive electrode and the negative electrode. An electrolyte has an organic solvent especially containing ether-based organic solvents and a lithium salt that provides a conductive medium for lithium ions to transfer between the positive electrode and the negative electrode. Such a rechargeable lithium-ion battery provides advantageous power delivery, long driving ranges, and fast charge to enhance widespread use of batteries, especially in vehicles. Furthermore, lithium plating can be minimized or avoided, even at low temperature charging. Methods of recharging a rechargeable lithium-ion battery at low temperatures are also disclosed.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: January 26, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, Li Yang, Gayatri V. Dadheech, Gongshin Qi, Mark W. Verbrugge, Sherman H. Zeng
  • Patent number: 10901042
    Abstract: A method for determining a state of charge (SOC) of a rechargeable battery cell includes determining a rate-invariant charge/discharge relationship between an open-circuit voltage (OCV) and a state of charge (SOC). This includes a first finite-rate voltage scan following a reduction branch of a relationship between OCV and the SOC, and executing a second finite-rate voltage scan following an oxidation branch of a relationship between OCV and the SOC. A rate-dependent charge/discharge relationship between the OCV and the SOC is determined during scanned voltage transitions between the reduction and oxidation branches. A present SOC state is determined based upon an electrical potential, the rate-invariant charge/discharge relationship between the OCV and the SOC, and the rate-dependent charge/discharge relationship between the OCV and the SOC during a voltage-scan reversal that occurs when the scanned voltage transitions between the reduction and oxidation branches.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: January 26, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: Mark W. Verbrugge, Daniel R. Baker, Xingcheng Xiao
  • Publication number: 20200388825
    Abstract: In an embodiment, an electrode comprises a current collector and an active layer located on at least one side of the current collector and in electrical communication with the current collector. The active layer comprises a binder and an expanded silicon; wherein the active layer expands by less than or equal to 10 volume percent when in use. In another embodiment, a method of forming an electrode comprises forming the electrode from a pre-cycled, expanded silicon.
    Type: Application
    Filed: June 10, 2019
    Publication date: December 10, 2020
    Inventors: Mark W. Verbrugge, Xiaosong Huang, Raghunathan K
  • Publication number: 20200388824
    Abstract: Anodes, and battery cells utilizing the same, include silicon particles embedded within a copper matrix, wherein the anode includes 40 at. % to 75 at. % silicon. The anode can include about 21 at. % to about 67 at. % silicon particles. The copper matrix can include pure copper and/or one or more copper-silicon intermetallic phases. The copper matrix can further include one or more of nickel, gold, silver, beryllium, and zinc. The silicon particles embedded in the copper matrix can have an average particle diameter less than 10 ?m. The non-surfacial silicon particles embedded in the copper matrix can be at least 99 at. % pure. The anode can be a woven mesh of ribbons or a planar sheet.
    Type: Application
    Filed: June 10, 2019
    Publication date: December 10, 2020
    Inventors: Anil K. Sachdev, Andrew C. Bobel, James R. Salvador, Mark W. Verbrugge
  • Publication number: 20200377370
    Abstract: Systems, methods and compositions to produce fine powders are described. These include forming a hypereutectic melt including a target material, a sacrificial-matrix material, and an impurity, rapidly cooling the hypereutectic melt to form a hypereutectic alloy having a first phase and a second phase, annealing the hypereutectic alloy to alter a morphology of the target material to thereby produce target particles, and removing the sacrificial matrix to thereby produce a fine powder of the target particles. The first phase is defined by the target material and the second phase is defined by the sacrificial-matrix material. The sacrificial-matrix material forms a sacrificial matrix having the target material dispersed therethrough.
    Type: Application
    Filed: June 1, 2019
    Publication date: December 3, 2020
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Mahmoud Abd Elhamid, Andrew C. Bobel, Anil K. Sachdev, Mark W. Verbrugge, Nicholas P. Pieczonka, James R. Salvador
  • Patent number: 10814743
    Abstract: An energy management system for a vehicle has a battery system including a first battery pack with a first set of battery cells and a second battery pack with a second set of battery cells. The first battery pack has a relatively high power density in comparison to the second battery pack, and the second battery pack has a relatively high energy density in comparison to the first battery pack. An electronic controller is operatively connected to the battery system and is configured to control charging and discharging of the first battery pack and the second battery pack. The first battery pack and the second battery pack are configured to be separately charged and discharged. The electronic controller prioritizes charging and discharging of the first battery pack over the second battery pack.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: October 27, 2020
    Assignee: GM Global Technology Operations LLC
    Inventors: Wei Li, Mark W. Verbrugge
  • Publication number: 20200321648
    Abstract: Electrodes are formed with a porous layer of particulate electrode material bonded to each of the two major sides of a compatible metal current collector. In one embodiment, opposing electrodes are formed with like lithium-ion battery anode materials or like cathode materials or capacitor materials on both sides of the current collector. In another embodiment, a battery electrode material is applied to one side of a current collector and capacitor material is applied to the other side. In general, the electrodes are formed by combining a suitable grouping of capacitor layers with un-equal numbers of anode and cathode battery layers. One or more pairs of opposing electrodes are assembled to provide a combination of battery and capacitor energy and power properties in a hybrid electrochemical cell. The cells may be formed by stacking or winding rolls of the opposing electrodes with interposed separators.
    Type: Application
    Filed: June 19, 2020
    Publication date: October 8, 2020
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Haijing LIU, Zhiqiang YU, Jianyong LIU, Xiaochao QUE, Mark W. VERBRUGGE
  • Publication number: 20200220154
    Abstract: A method of manufacturing a silicon-carbon composite electrode assembly for an electrochemical cell includes forming an electrode by pyrolyzing at least a portion of a polymer in an assembly to form pyrolyzed carbon. The assembly includes an electrode precursor in electrical contact with a current collector. The electrode precursor includes a polymer and an electroactive material. The electroactive material includes silicon. The current collector includes an electrically-conductive material. The pyrolyzing includes directing an energy stream toward a surface of the electrode precursor. The surface is disposed opposite the current collector. The silicon-carbon composite electrode assembly includes the electrode and the current collector. In certain variations, the energy stream includes a laser beam or a plasma jet. In certain aspects, the electrode defines a concentration gradient between a first surface and a second surface.
    Type: Application
    Filed: January 3, 2019
    Publication date: July 9, 2020
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng XIAO, Hongliang WANG, Mark W. VERBRUGGE
  • Publication number: 20200220153
    Abstract: Methods of forming a plurality of axial geometry carbon structures (e.g., carbon nanotubes or carbon fibers) in situ in an electrode of an electrochemical cell that cycles lithium ions are provided. Electroactive particles that undergo volumetric expansion are mixed with a polymer precursor and a plurality of catalytic nanoparticles comprising a metal selected from the group consisting of: iron, nickel, cobalt, alloys, and combinations thereof to form a substantially homogeneous slurry. The slurry is applied to a substrate and then heated in an environment having a temperature of ?about 1000° C. and in certain aspects, ?about 895° C. to pyrolyze the polymer precursor. The plurality of catalytic nanoparticles facilitates in situ precipitation of carbon to grow a plurality of axial geometry carbon structures. After the heating, the electrode includes an electrically conductive carbonaceous porous network comprising the plurality of electroactive particles and the plurality of axial geometry carbon structures.
    Type: Application
    Filed: January 3, 2019
    Publication date: July 9, 2020
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng XIAO, Mark W. VERBRUGGE
  • Publication number: 20200220172
    Abstract: A rechargeable lithium-ion battery is provided that includes a positive electrode with a positive electroactive material that in a charged state includes lithium iron (II) orthosilicate (Li2FeSiO4) and in a discharged state includes FeSiO4 or LiFeSiO4. A negative electrode includes phosphorene. A separator is disposed between the positive and negative electrodes. An electrolyte has an organic solvent especially containing ether-based organic solvents and a lithium salt that provides a conductive medium for lithium ions to transfer between the positive electrode and the negative electrode. Such a rechargeable lithium-ion battery provides advantageous power delivery, long driving ranges, and fast charge to enhance widespread use of batteries, especially in vehicles. Furthermore, lithium plating can be minimized or avoided, even at low temperature charging. Methods of recharging a rechargeable lithium-ion battery at low temperatures are also provided.
    Type: Application
    Filed: January 9, 2019
    Publication date: July 9, 2020
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng XIAO, Li YANG, Gayatri V. DADHEECH, Gongshin QI, Mark W. VERBRUGGE, Sherman H. ZENG
  • Patent number: 10693176
    Abstract: Electrodes are formed with a porous layer of particulate electrode material bonded to each of the two major sides of a compatible metal current collector. In one embodiment, opposing electrodes are formed with like lithium-ion battery anode materials or like cathode materials or capacitor materials on both sides of the current collector. In another embodiment, a battery electrode material is applied to one side of a current collector and capacitor material is applied to the other side. In general, the electrodes are formed by combining a suitable grouping of capacitor layers with un-equal numbers of anode and cathode battery layers. One or more pairs of opposing electrodes are assembled to provide a combination of battery and capacitor energy and power properties in a hybrid electrochemical cell. The cells may be formed by stacking or winding rolls of the opposing electrodes with interposed separators.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: June 23, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Haijing Liu, Zhiqiang Yu, Jianyong Liu, Xiaochao Que, Mark W. Verbrugge
  • Patent number: 10622621
    Abstract: A high performance electrode for an electrochemical cell including electroactive materials having a large charge capacity and that undergo substantial volumetric expansion and contraction during cycling of the electrochemical cell and a method for making the high performance electrode are provided. The electroactive material of the high performance electrode may have a thickness greater than or equal to about 1 ?m. Methods of forming the high performance electrodes includes patterning the electroactive material to form a plurality of void spaces using a high-speed process selected from the group consisting of: laser ablation, electron beam machining, ion beam milling, roll forming, embossing, lithography, and combinations thereof. The plurality of void spaces accommodates the volumetric expansion and contraction to minimize cracking and damage to the electrode during cycling of the electrochemical cell.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: April 14, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, Hongliang Wang, Qinglin Zhang, Mark W. Verbrugge
  • Patent number: 10620275
    Abstract: A number of variations may include products and methods for estimating the state of an energy system. At least one sensor may monitor a voltage and a current of the energy storage system. An electronic controller may be communicatively coupled with the energy storage system and may receive input from the sensor. A circuit may be representative of the energy storage system and may be appropriately defined in the electronic controller. The circuit may estimate a state of the energy storage system from a reading of the voltage and the current.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: April 14, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Mark W. Verbrugge, Charles W. Wampler, Bob R. Powell, Jr.
  • Patent number: 10615461
    Abstract: An electrochemical cell of a secondary lithium ion battery includes lithium ion-exchanged zeolite particles or “lithiated zeolite particles” positioned along at least a portion of a lithium ion transport path through the electrochemical cell. The lithiated zeolite particles may be positioned within the lithium ion transport path through the electrochemical cell, for example, by being distributed throughout an electrolyte disposed between confronting anterior surfaces of a negative electrode and a positive electrode. Additionally or alternatively, the lithiated zeolite particles may be positioned within the lithium ion transport path through the electrochemical cell by being distributed throughout or deposited as a coating layer on the negative electrode, the positive electrode, and/or a porous separator sandwiched between the confronting anterior surfaces of the negative and positive electrodes.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: April 7, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, Sherman H. Zeng, Mei Cai, Mark W. Verbrugge
  • Patent number: 10591549
    Abstract: A number of variations may include a product comprising: at least one sensor comprising an optical fiber comprising a first end comprising a semiconductor material, a second end, and a longitudinal midsection comprising a grating, wherein the sensor is constructed and arranged to provide measurements that derive both state of charge and temperature of an electrochemical device simultaneously.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: March 17, 2020
    Assignee: GM Global Technology Operations LLC
    Inventors: Shuoqin Wang, Mark W. Verbrugge, Charles W. Wampler, II
  • Patent number: 10589629
    Abstract: A number of variations may include a product comprising: an electrochemical device comprising an anode and a cathode, and at least one sensor comprising a plurality of strain sensing components and at least one temperature sensing component wherein each of the anode and the cathode comprises at least one strain sensing component comprising an optical fiber comprising at least one grating, wherein the at least one sensor is constructed and arranged to provide measurements that derive both state of charge and temperature of the anode and the cathode simultaneously.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: March 17, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Charles W. Wampler, II, Brian J. Koch, Mark W. Verbrugge
  • Publication number: 20190379090
    Abstract: During the charging of lithium-ion batteries, comprising graphite anode particles, the goal is to intercalate lithium into the anode materials as LiC6. But it is possible to conduct the charging process at a rate that lithium is undesirably plated, undetected, as lithium metal on the particles of graphite. During an open-circuit period of battery operation, immediately following such a charging period, the presence of lithium plating can be detected, using a computer-based monitoring system, by continually measuring the cell potential (Vcell) over a brief period of open-circuit time, fitting the open-circuit voltage data to a best cubic polynomial fit, and then determining dVcell/dt (mV/s) from the polynomial fit over a like period of time. It is found that the presence of a maximum or a minimum in the derivative curve (a local minimum) reliably correlates with plated lithium on the graphite particles of the anode.
    Type: Application
    Filed: June 12, 2018
    Publication date: December 12, 2019
    Inventors: Mark W. Verbrugge, Charles W. Wampler, Daniel R. Baker, Raghunathan K, Brian J. Koch, Alfred Zhang