Patents by Inventor Marko Radosavljevic

Marko Radosavljevic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11652143
    Abstract: Disclosed herein are IC structures, packages, and devices that include thin-film transistors (TFTs) integrated on the same substrate/die/chip as III-N devices, e.g., III-N transistors. In various aspects, TFTs integrated with III-N transistors have a channel and source/drain materials that include one or more of a crystalline material, a polycrystalline semiconductor material, or a laminate of crystalline and polycrystalline materials. In various aspects, TFTs integrated with III-N transistors are engineered to include one or more of 1) graded dopant concentrations in their source/drain regions, 2) graded dopant concentrations in their channel regions, and 3) thicker and/or composite gate dielectrics in their gate stacks.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: May 16, 2023
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Nidhi Nidhi, Paul B. Fischer, Rahul Ramaswamy, Walid M. Hafez, Samuel Jack Beach, Xiaojun Weng, Johann Christian Rode, Marko Radosavljevic, Sansaptak Dasgupta
  • Publication number: 20230145229
    Abstract: Techniques are provided herein to form semiconductor devices having backside contacts. Sacrificial plugs are formed first within a substrate at particular locations to align with source and drain regions during a later stage of processing. Another wafer is subsequently bonded to the surface of the substrate and is thinned to effectively transfer different material layers to the top surface of the substrate. One of the transferred layers acts as a seed layer for the growth of additional semiconductor material used to form semiconductor devices. The source and drain regions of the semiconductor devices are sufficiently aligned over the previously formed sacrificial plugs. A backside portion of the substrate may be removed to expose the sacrificial plugs from the backside. Removal of the plugs and replacement of the recesses left behind with conductive material forms the conductive backside contacts to the source or drain regions.
    Type: Application
    Filed: November 9, 2021
    Publication date: May 11, 2023
    Applicant: Intel Corporation
    Inventors: Nicole K. Thomas, Ashish Agrawal, Gilbert Dewey, Cheng-Ying Huang, Ehren Mannebach, Willy Rachmady, Marko Radosavljevic
  • Publication number: 20230132749
    Abstract: Techniques are provided herein to form semiconductor devices having a stacked transistor configuration. In an example, an upper (e.g., n-channel) device and a lower (e.g., p-channel) device may both be gate-all-around (GAA) transistors each having any number of nanoribbons extending in the same direction where the upper device is located vertically above the lower device. According to some embodiments, an internal spacer structure extends between the nanoribbons of the upper device and the nanoribbons of the lower device along the vertical direction, where the spacer structure has a stepwise or an otherwise outwardly protruding profile as it extends between the nanoribbons of the upper device and the lower device. Accordingly, in one example, a gate structure formed around the nanoribbons of both the n-channel device and the p-channel device exhibits a greater width in the region between the nanoribbons of the n-channel device and the nanoribbons of the p-channel device.
    Type: Application
    Filed: November 2, 2021
    Publication date: May 4, 2023
    Applicant: Intel Corporation
    Inventors: Nicole K. Thomas, Marko Radosavljevic, Cheng-Ying Huang, Willy Rachmady, Gilbert Dewey, Ashish Agrawal
  • Publication number: 20230134379
    Abstract: Techniques are provided herein to form gate-all-around (GAA) semiconductor devices, such as those having a stacked transistor configuration. In one example case, two different semiconductor devices may both be GAA transistors each having any number of nanoribbons extending in the same (e.g., horizontal) direction where one device is located vertically above the other device. An internal spacer structure extends between the nanoribbons of both devices along the vertical direction, where the spacer structure includes one or more rib features between the two devices. A gate structure that includes one or more gate dielectric layers and one or more gate electrode layers may be formed around the nanoribbons of both devices, in some cases. In other cases, a split-gate configuration is used where upper and lower gate structures are separated by an isolation structure. Forksheet transistors and other GAA configurations may be formed using the techniques as well.
    Type: Application
    Filed: November 3, 2021
    Publication date: May 4, 2023
    Applicant: Intel Corporation
    Inventors: Cheng-Ying Huang, Urusa Alaan, Susmita Ghose, Rambert Nahm, Natalie Briggs, Nicole K. Thomas, Willy Rachmady, Marko Radosavljevic, Jack T. Kavalieros
  • Publication number: 20230126135
    Abstract: Techniques are provided herein to form a forksheet transistor device with a dielectric overhang structure. The dielectric overhang structure includes a dielectric layer that at least partially hangs over the nanoribbons of each semiconductor device in the forksheet transistor and is directly coupled to, or is an integral part of, the dielectric spine between the semiconductor devices. The overhang structure allows for a higher alignment tolerance when forming different work function metals over each of the different semiconductor devices, which in turn allows for narrower dielectric spines to be used. A first gate structure that includes a first work function metal may be formed around the nanoribbons of the n-channel device and a second gate structure that includes a second work function metal may be formed around the nanoribbons of the p-channel device in the forksheet arrangement.
    Type: Application
    Filed: October 25, 2021
    Publication date: April 27, 2023
    Applicant: Intel Corporation
    Inventors: Christopher M. Neumann, Ashish Agrawal, Seung Hoon Sung, Marko Radosavljevic, Jack T. Kavalieros
  • Patent number: 11626519
    Abstract: Embodiments of the invention include non-planar InGaZnO (IGZO) transistors and methods of forming such devices. In an embodiment, the IGZO transistor may include a substrate and source and drain regions formed over the substrate. According to an embodiment, an IGZO layer may be formed above the substrate and may be electrically coupled to the source region and the drain region. Further embodiments include a gate electrode that is separated from the IGZO layer by a gate dielectric. In an embodiment, the gate dielectric contacts more than one surface of the IGZO layer. In one embodiment, the IGZO transistor is a finfet transistor. In another embodiment the IGZO transistor is a nanowire or a nanoribbon transistor. Embodiments of the invention may also include a non-planar IGZO transistor that is formed in the back end of line stack (BEOL) of an integrated circuit chip.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: April 11, 2023
    Assignee: Intel Corporation
    Inventors: Van H. Le, Gilbert Dewey, Rafael Rios, Jack T. Kavalieros, Marko Radosavljevic, Kent E. Millard, Marc C. French, Ashish Agrawal, Benjamin Chu-Kung, Ryan E. Arch
  • Patent number: 11626513
    Abstract: Embodiments include a transistor and methods of forming a transistor. In an embodiment, the transistor comprises a semiconductor channel, a source electrode on a first side of the semiconductor channel, a drain electrode on a second side of the semiconductor channel, a polarization layer over the semiconductor channel, an insulator stack over the polarization layer, and a gate electrode over the semiconductor channel. In an embodiment, the gate electrode comprises a main body that passes through the insulator stack and the polarization layer, and a first field plate extending out laterally from the main body.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: April 11, 2023
    Assignee: Intel Corporation
    Inventors: Rahul Ramaswamy, Nidhi Nidhi, Walid M. Hafez, Johann C. Rode, Paul Fischer, Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta, Heli Chetanbhai Vora
  • Publication number: 20230108072
    Abstract: In one embodiment, an apparatus includes a source region, a drain region, a channel between the source and drain regions, and a polarization layer on the channel. The channel includes gallium and nitrogen, and the polarization layer includes a group III-nitride (III-N) material. The apparatus further includes a gate structure having a first region and a second region. The first region extends into the polarization layer and includes a metal. The second region is coupled to the first region and includes a polycrystalline semiconductor material.
    Type: Application
    Filed: September 22, 2021
    Publication date: April 6, 2023
    Applicant: Intel Corporation
    Inventors: Han Wui Then, Paul Fischer, Marko Radosavljevic
  • Publication number: 20230102318
    Abstract: In one embodiment, an integrated circuit die includes a substrate, a base structure, and a plurality of semiconductor structures. The substrate includes silicon. The base structure is above the substrate and includes one or more group III-nitride (III-N) materials. The semiconductor structures are in a two-dimensional (2D) layout on the base structure and include a plurality of metal contacts, at least some of which have different shapes and comprise different metals.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Applicant: Intel Corporation
    Inventors: Rahul Ramaswamy, Walid M. Hafez, Marko Radosavljevic, Han Wui Then, Sansaptak Dasgupta
  • Patent number: 11616488
    Abstract: An integrated circuit film bulk acoustic resonator (FBAR) device having multiple resonator thicknesses is formed on a common substrate in a stacked configuration. In an embodiment, a seed layer is deposited on a substrate, and one or more multi-layer stacks are deposited on the seed layer, each multi-layer stack having a first metal layer deposited on a first sacrificial layer, and a second metal layer deposited on a second sacrificial layer. The second sacrificial layer can be removed and the resulting space is filled in with a piezoelectric material, and the first sacrificial layer can be removed to release the piezoelectric material from the substrate and suspend the piezoelectric material above the substrate. More than one multi-layer stack can be added, each having a unique resonant frequency. Thus, multiple resonator thicknesses can be achieved on a common substrate, and hence, multiple resonant frequencies on that same substrate.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: March 28, 2023
    Assignee: Intel Corporation
    Inventors: Sansaptak Dasgupta, Paul B. Fischer, Han Wui Then, Marko Radosavljevic
  • Publication number: 20230090106
    Abstract: Gallium nitride (GaN) layer transfer for integrated circuit technology is described. In an example, an integrated circuit structure includes a substrate including silicon. A first layer including gallium and nitrogen is over a first region of the substrate, the first layer having a gallium-polar orientation with a top crystal plane consisting of a gallium face. A second layer including gallium and nitrogen is over a second region of the substrate, the second layer having a nitrogen-polar orientation with a top crystal plane consisting of a nitrogen face.
    Type: Application
    Filed: September 21, 2021
    Publication date: March 23, 2023
    Inventors: Han Wui THEN, Marko RADOSAVLJEVIC, Sansaptak DASGUPTA, Paul B. FISCHER, Walid M. HAFEZ, Nicole K. THOMAS, Nityan NAIR, Pratik KOIRALA, Paul NORDEEN, Tushar TALUKDAR, Thomas HOFF, Thoe MICHAELOS
  • Patent number: 11610887
    Abstract: Disclosed herein are IC structures, packages, and devices that include thin-film transistors (TFTs) integrated on the same substrate/die/chip as III-N transistors. An example IC structure includes an III-N semiconductor material provided over a support structure, a III-N transistor provided over a first portion of the III-N material, and a TFT provided over a second portion of the III-N material. Because the III-N transistor and the TFT are both provided over a single support structure, they may be referred to as “integrated” transistors. Because the III-N transistor and the TFT are provided over different portions of the III-N semiconductor material, and, therefore, over different portion of the support structure, their integration may be referred to as “side-by-side” integration. Integrating TFTs with III-N transistors may reduce costs and improve performance, e.g., by reducing losses incurred when power is routed off chip in a multi-chip package.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: March 21, 2023
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Marko Radosavljevic, Sansaptak Dasgupta, Paul B. Fischer, Walid M. Hafez
  • Patent number: 11610971
    Abstract: An integrated circuit structure comprises a base layer that includes a channel region, wherein the base layer and the channel region include group III-V semiconductor material. A polarization layer stack is over the base layer, wherein the polarization layer stack comprises a buffer stack, an interlayer over the buffer stack, a polarization layer over the interlayer. A cap layer stack is over the polarization layer to reduce transistor access resistance.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: March 21, 2023
    Assignee: Intel Corporation
    Inventors: Sansaptak Dasgupta, Marko Radosavljevic, Han Wui Then, Nidhi Nidhi, Rahul Ramaswamy, Johann Rode, Paul Fischer, Walid Hafez
  • Publication number: 20230081460
    Abstract: Gallium nitride (GaN) integrated circuit technology with optical communication is described. In an example, an integrated circuit structure includes a layer or substrate having a first region and a second region, the layer or substrate including gallium and nitrogen. A GaN-based device is in or on the first region of the layer or substrate. A CMOS-based device is over the second region of the layer or substrate. An interconnect structure is over the GaN-based device and over the CMOS-based device, the interconnect structure including conductive interconnects and vias in a dielectric layer. A photonics waveguide is over the interconnect structure, the photonics waveguide including silicon, and the photonics waveguide bonded to the dielectric layer of the interconnect structure.
    Type: Application
    Filed: September 15, 2021
    Publication date: March 16, 2023
    Inventors: Han Wui THEN, Marko RADOSAVLJEVIC, Nicole K. THOMAS, Pratik KOIRALA, Nityan NAIR, Paul B. FISCHER
  • Publication number: 20230070486
    Abstract: Technologies for non-uniform random number generation are disclosed. In one embodiment, the distribution of resistance of a magnetic tunnel junction (MTJ) can be controlled by applying a mechanical strain with a piezoelectric layer and by applying a spin torque by a spin-orbit torque layer. The distribution of resistance can be approximately a Gaussian distribution. In another embodiment, an array of N probabilistic bits (p-bits) has a bias and feedback matrix that result in the array of p-bits outputting an N-bit random number with a non-uniform distribution, such as a Gaussian distribution.
    Type: Application
    Filed: September 3, 2021
    Publication date: March 9, 2023
    Applicant: Intel Corporation
    Inventors: Punyashloka Debashis, Ian Alexander Young, Dmitri Evgenievich Nikonov, Marko Radosavljevic, Hai Li
  • Publication number: 20230073078
    Abstract: An integrated circuit structure having a stacked transistor architecture includes a first semiconductor body (e.g., set of one or more nanoribbons) and a second semiconductor body (e.g., set of one or more nanoribbons) above the first semiconductor body. The first and second semiconductor bodies are part of the same fin structure. The distance between an upper surface of the first semiconductor body and a lower surface of the second semiconductor body is 60 nm or less. A first gate structure is on the first semiconductor body, and a second gate structure is on the second semiconductor body. An isolation structure that includes a dielectric material is between the first and second gate structures, and is on and conformal to a top surface of the first gate structure. In addition, a bottom surface of the second gate structure is on a top surface of the isolation structure, which is relatively flat.
    Type: Application
    Filed: August 25, 2021
    Publication date: March 9, 2023
    Applicant: Intel Corporation
    Inventors: Willy Rachmady, Sudipto Naskar, Cheng-Ying Huang, Gilbert Dewey, Marko Radosavljevic, Nicole K. Thomas, Patrick Morrow, Urusa Alaan
  • Publication number: 20230066336
    Abstract: Gallium nitride (GaN) epitaxy on patterned substrates for integrated circuit technology is described. In an example, an integrated circuit structure includes a material layer including gallium and nitrogen, the material layer having a first side and a second side opposite the first side. A plurality of fins is on the first side of the material layer, the plurality of fins including silicon. A device layer is on the second side of the material layer, the device layer including one or more GaN-based devices.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 2, 2023
    Inventors: Pratik KOIRALA, Paul NORDEEN, Tushar TALUKDAR, Kimin JUN, Thomas HOFF, Han Wui THEN, Nicole K. THOMAS, Marko RADOSAVLJEVIC, Paul B. FISCHER
  • Publication number: 20230068318
    Abstract: Disclosed herein are IC devices, packages, and device assemblies that include III-N diodes with n-doped wells and capping layers. An example IC device includes a support structure and a III-N layer, provided over a portion of the support structure, the III-N layer including an n-doped well of a III-N semiconductor material having n-type dopants with a dopant concentration of at least 5×1017 dopants per cubic centimeter. The IC device further includes a first and a second electrodes and at least one capping layer. The first electrode interfaces a first portion of the n-doped well. The capping layer interfaces a second portion of the n-doped well and includes a semiconductor material with a dopant concentration below 1017 dopants per cubic centimeter. The second electrode is provided so that the capping layer is between the second portion of the n-doped well and the second electrode.
    Type: Application
    Filed: August 27, 2021
    Publication date: March 2, 2023
    Applicant: Intel Corporation
    Inventors: Richard Geiger, Georgios Panagopoulos, Luis Felipe Giles, Peter Baumgartner, Harald Gossner, Sansaptak Dasgupta, Marko Radosavljevic, Han Wui Then
  • Publication number: 20230069054
    Abstract: Gallium nitride (GaN) integrated circuit technology with multi-layer epitaxy and layer transfer is described. In an example, an integrated circuit structure includes a first channel structure including a plurality of alternating first channel layers and second channel layers, the first channel layers including gallium and nitrogen, and the second layers including gallium, aluminum and nitrogen. A second channel structure is bonded to the first channel structure. The second channel structure includes a plurality of alternating third channel layers and fourth channel layers, the third channel layers including gallium and nitrogen, and the fourth layers including gallium, aluminum and nitrogen.
    Type: Application
    Filed: August 24, 2021
    Publication date: March 2, 2023
    Inventors: Souvik GHOSH, Han Wui THEN, Pratik KOIRALA, Tushar TALUKDAR, Paul NORDEEN, Nityan NAIR, Marko RADOSAVLJEVIC, Ibrahim BAN, Kimin JUN, Jay GUPTA, Paul B. FISCHER, Nicole K. THOMAS, Thomas HOFF, Samuel James BADER
  • Publication number: 20230062922
    Abstract: Gallium nitride (GaN) selective epitaxial windows for integrated circuit technology is described. In an example, an integrated circuit structure includes a substrate including silicon, the substrate having a top surface. A first trench is in the substrate, the first trench having a first width and a first height. A second trench is in the substrate, the second trench having a second width and a second height. The second width is greater than the first width, and the second height is greater than the first height. A first island is in the first trench, the first island including gallium and nitrogen and having first corner facets at least partially below the top surface of the substrate. A second island is in the second trench, the second island including gallium and nitrogen and having second corner facets at least partially below the top surface of the substrate.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 2, 2023
    Inventors: Samuel James BADER, Pratik KOIRALA, Nicole K. THOMAS, Han Wui THEN, Marko RADOSAVLJEVIC