Patents by Inventor Markus Bina

Markus Bina has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11250966
    Abstract: An apparatus for processing a plurality of semiconductor wafers, the apparatus including a spallation chamber, a neutron producing material mounted in the spallation chamber, a neutron moderator, and an irradiation chamber coupled to the spallation chamber, wherein the neutron moderator is disposed between the spallation chamber and the irradiation chamber, wherein the irradiation chamber is configured to accommodate the plurality of semiconductor wafers, wherein each of the plurality of semiconductor wafers has a first surface and a second surface opposite the first surface, wherein the plurality of semiconductor wafers are positioned so that a first surface of one semiconductor wafer faces a second surface of another semiconductor wafer.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: February 15, 2022
    Assignee: Infineon Technologies AG
    Inventors: Markus Bina, Hans-Joachim Schulze, Werner Schustereder
  • Patent number: 11075290
    Abstract: A power semiconductor device includes an active region surrounded by an inactive termination region each formed by part of a semiconductor body. The active region conducts load current between first and second load terminals. At least one power cell has trenches extending into the semiconductor body adjacent to each other along a first lateral direction and having a stripe configuration that extends along a second lateral direction into the active region. The trenches spatially confine a plurality of mesas each having at least one first type mesa electrically connected to the first load terminal and configured to conduct at least a part of the load current, and at least one second type mesa configured to not conduct the load current. A decoupling structure separates at least one of the second type mesas into a first section in the active region and a second section in the termination region.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: July 27, 2021
    Assignees: Infineon Technologies AG, Infineon Technologies Dresden GmbH & Co. KG
    Inventors: Matteo Dainese, Alexander Philippou, Markus Bina, Ingo Dirnstorfer, Erich Griebl, Christian Jaeger, Johannes Georg Laven, Caspar Leendertz, Frank Dieter Pfirsch
  • Publication number: 20210226072
    Abstract: A method of processing a power diode includes: creating an anode region and a drift region in a semiconductor body; and forming, by a single ion implantation processing step, each of an anode contact zone and an anode damage zone in the anode region. Power diodes manufactured by the method are also described.
    Type: Application
    Filed: March 17, 2021
    Publication date: July 22, 2021
    Inventors: Anton Mauder, Mario Barusic, Markus Bina, Matteo Dainese
  • Patent number: 10978596
    Abstract: A method of processing a power diode includes: creating an anode region and a drift region in a semiconductor body: and forming, by a single ion implantation processing step, each of an anode contact zone and an anode damage zone in the anode region. Power diodes manufactured by the method are also described.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: April 13, 2021
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Mario Barusic, Markus Bina, Matteo Dainese
  • Patent number: 10923578
    Abstract: A semiconductor device includes a transistor. The transistor includes a drift region of a first conductivity type in a semiconductor substrate having a first main surface, a body region of a second conductivity type between the drift region and the first main surface, and a plurality of trenches in the first main surface and patterning the semiconductor substrate into a plurality of mesas including a first mesa and a dummy mesa. The plurality of trenches includes at least one active trench. The first mesa is arranged at a first side of the active trench, and the dummy mesa is arranged at a second side of the active trench. A gate electrode is arranged in the active trench, and a source region of the first conductivity type is in the first mesa. A one-sided channel of the transistor is configured to be formed in the first mesa.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: February 16, 2021
    Assignee: Infineon Technologies Austria AG
    Inventors: Caspar Leendertz, Markus Bina, Matteo Dainese, Alice Pei-Shan Hsieh, Christian Philipp Sandow
  • Patent number: 10903353
    Abstract: In accordance with an embodiment, a method include switching on a transistor device by generating a first conducting channel in a body region by driving a first gate electrode and, before generating the first conducting channel, generating a second conducting channel in the body region by driving a second gate electrode. The first gate electrode is dielectrically insulated from a body region by a first gate dielectric, and the second gate electrode is dielectrically insulated from the body region by a second gate dielectric, arranged adjacent the first gate electrode, and separated from the first gate electrode by a separation layer. The body region is arranged between a source region and a drift region, and wherein the drift region is arranged between body region and a drain region.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: January 26, 2021
    Assignee: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Markus Bina, Anton Mauder, Jens Barrenscheen
  • Patent number: 10840362
    Abstract: A power semiconductor device includes an active cell region with a drift region, and IGBT cells at least partially arranged within the active cell region. Each IGBT cell includes at least one trench extending into the drift region along a vertical direction, an edge termination region surrounding the active cell region, and a transition region arranged between the active cell region and the edge termination region. The transition region has a width along a lateral direction from the active cell region towards the edge termination region. At least some of the IGBT cells are arranged within, or, respectively, extend into the transition region. An electrically floating barrier region of each IGBT cell is arranged within the active cell region and in contact with at least some of the trenches of the IGBT cells. The electrically floating barrier region does not extend into the transition region.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: November 17, 2020
    Assignee: Infineon Technologies AG
    Inventors: Alexander Philippou, Markus Bina, Matteo Dainese, Christian Jaeger, Johannes Georg Laven, Francisco Javier Santos Rodriguez, Antonio Vellei, Caspar Leendertz, Christian Philipp Sandow
  • Patent number: 10644141
    Abstract: A power semiconductor device having an IGBT-configuration includes at least one power cell. Each power cell includes at least three trenches arranged laterally adjacent to each other. Each trench extends into a semiconductor body along a vertical direction and includes an insulator that insulates a respective electrode from the semiconductor body. The at least three trenches include at least one control trench whose electrode is electrically coupled to a control terminal, and a source trench whose electrode is electrically coupled to a first load terminal. An active mesa for conduction of at least a part of the load current is laterally confined at least by one of the at least one control trench and includes at least a respective section of each of a source region and a channel region. An auxiliary mesa is laterally confined by the source trench and one of the at least one control trench.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: May 5, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Caspar Leendertz, Markus Bina, Christian Philipp Sandow
  • Publication number: 20200136608
    Abstract: In accordance with an embodiment, a method includes switching on a transistor device by generating a first conducting channel by driving a first gate electrode and, before generating the first conducting channel, generating a second conducting channel by driving a second gate electrode, wherein the second gate electrode is adjacent the first gate electrode in a current flow direction of the transistor device.
    Type: Application
    Filed: December 20, 2019
    Publication date: April 30, 2020
    Inventors: Markus Bina, Jens Barrenscheen, Anton Mauder
  • Patent number: 10615272
    Abstract: A method of processing a semiconductor device includes: providing a semiconductor body with a drift region; forming trenches extending into the semiconductor body along a vertical direction and arranged adjacent to each other along a first lateral direction; providing a mask arrangement having a lateral structure so that some of the trenches are exposed and at least one of the trenches is covered by the mask arrangement along the first lateral direction; subjecting the semiconductor body and the mask arrangement to a dopant material providing step to form a plurality of doping regions of a second conductivity type below bottoms of the exposed trenches; removing the mask arrangement; subjecting the semiconductor body to a temperature annealing step so that the doping regions extend in parallel to the first lateral direction and overlap to form a barrier region of the second conductivity type adjacent to the bottoms of the exposed trenches.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: April 7, 2020
    Assignee: Infineon Technologies AG
    Inventors: Antonio Vellei, Markus Bina, Matteo Dainese, Christian Jaeger, Johannes Georg Laven, Alexander Philippou, Francisco Javier Santos Rodriguez
  • Patent number: 10546939
    Abstract: A power semiconductor device having a semiconductor body configured to conduct a load current is disclosed. In one example, the device includes a source region having dopants of a first conductivity type; a semiconductor channel region implemented in the semiconductor body and separating the source region from a remaining portion of the semiconductor body; a trench of a first trench type extending in the semiconductor body along an extension direction and being arranged adjacent to the semiconductor channel region, the trench of the first trench type including a control electrode that is insulated from the semiconductor body. The semiconductor body further comprises: a barrier region and a drift volume having at least a first drift region wherein the barrier region couples the first drift region with the semiconductor channel region.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: January 28, 2020
    Assignee: Infineon Technologies AG
    Inventors: Roman Baburske, Markus Bina, Hans-Joachim Schulze, Oana Julia Spulber
  • Patent number: 10530360
    Abstract: In accordance with an embodiment, a method includes switching on a transistor device by generating a first conducting channel by driving a first gate electrode and, before generating the first conducting channel, generating a second conducting channel by driving a second gate electrode, wherein the second gate electrode is adjacent the first gate electrode in a current flow direction of the transistor device.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: January 7, 2020
    Assignee: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Markus Bina, Anton Mauder, Jens Barrenscheen
  • Publication number: 20200005957
    Abstract: An apparatus for processing a plurality of semiconductor wafers, the apparatus including a spallation chamber, a neutron producing material mounted in the spallation chamber, a neutron moderator, and an irradiation chamber coupled to the spallation chamber, wherein the neutron moderator is disposed between the spallation chamber and the irradiation chamber, wherein the irradiation chamber is configured to accommodate the plurality of semiconductor wafers, wherein each of the plurality of semiconductor wafers has a first surface and a second surface opposite the first surface, wherein the plurality of semiconductor wafers are positioned so that a first surface of one semiconductor wafer faces a second surface of another semiconductor wafer.
    Type: Application
    Filed: September 13, 2019
    Publication date: January 2, 2020
    Inventors: Markus BINA, Hans-Joachim Schulze, Werner Schustereder
  • Patent number: 10468148
    Abstract: In various embodiments, a method of processing one or more semiconductor wafers is provided. The method includes positioning the one or more semiconductor wafers in an irradiation chamber, generating a neutron flux in a spallation chamber coupled to the irradiation chamber, moderating the neutron flux to produce a thermal neutron flux, and exposing the one or more semiconductor wafers to the thermal neutron flux to thereby induce the creation of dopant atoms in the one or more semiconductor wafers.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: November 5, 2019
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Markus Bina, Hans-Joachim Schulze, Werner Schustereder
  • Publication number: 20190288088
    Abstract: A power semiconductor device having a semiconductor body configured to conduct a load current is disclosed. In one example, the device includes a source region having dopants of a first conductivity type; a semiconductor channel region implemented in the semiconductor body and separating the source region from a remaining portion of the semiconductor body; a trench of a first trench type extending in the semiconductor body along an extension direction and being arranged adjacent to the semiconductor channel region, the trench of the first trench type including a control electrode that is insulated from the semiconductor body. The semiconductor body further comprises: a barrier region and a drift volume having at least a first drift region wherein the barrier region couples the first drift region with the semiconductor channel region.
    Type: Application
    Filed: May 24, 2019
    Publication date: September 19, 2019
    Applicant: Infineon Technologies AG
    Inventors: Roman Baburske, Markus Bina, Hans-Joachim Schulze, Oana Julia Spulber
  • Publication number: 20190273155
    Abstract: A power semiconductor device includes an active region surrounded by an inactive termination region each formed by part of a semiconductor body. The active region conducts load current between first and second load terminals. At least one power cell has trenches extending into the semiconductor body adjacent to each other along a first lateral direction and having a stripe configuration that extends along a second lateral direction into the active region. The trenches spatially confine a plurality of mesas each having at least one first type mesa electrically connected to the first load terminal and configured to conduct at least a part of the load current, and at least one second type mesa configured to not conduct the load current. A decoupling structure separates at least one of the second type mesas into a first section in the active region and a second section in the termination region.
    Type: Application
    Filed: May 10, 2019
    Publication date: September 5, 2019
    Inventors: Matteo Dainese, Alexander Philippou, Markus Bina, Ingo Dirnstorfer, Erich Griebl, Christian Jaeger, Johannes Georg Laven, Caspar Leendertz, Frank Dieter Pfirsch
  • Publication number: 20190259863
    Abstract: A chip includes a semiconductor body coupled to a first and a second load terminal. The semiconductor body includes an active region including a plurality of breakthrough cells, each of the breakthrough cells includes: an insulation structure; a drift region; an anode region, the anode region being electrically connected to the first load terminal and disposed in contact with the first load terminal; a first barrier region arranged in contact with each of the anode region and the insulation structure, where the first barrier region of the plurality of breakthrough cells forms a contiguous semiconductor layer; a second barrier region separating each of the anode region and at least a part of the first barrier region from the drift region; and a doped contact region arranged in contact with the second load terminal, where the drift region is positioned between the second barrier region and the doped contact region.
    Type: Application
    Filed: May 3, 2019
    Publication date: August 22, 2019
    Applicant: Infineon Technologies Austria AG
    Inventors: Markus BINA, Thomas BASLER, Matteo DAINESE, Hans-Joachim SCHULZE
  • Patent number: 10355116
    Abstract: A power semiconductor device includes: a semiconductor body coupled to a first load terminal and a second load terminal, and includes: a first doped region of a second conductivity type electrically connected to the first load terminal; a recombination zone arranged at least within the first doped region; an emitter region of the second conductivity type electrically connected to the second load terminal; and a drift region of a first conductivity type arranged between the first doped region and the emitter region. The drift region and the first doped region enable the power semiconductor device to operate in: a conducting state during which a load current between the load terminals is conducted along a forward direction; in a forward blocking state during which a forward voltage applied between the load terminals is blocked; and in a reverse blocking state during which a reverse voltage applied between the terminals is blocked.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: July 16, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Markus Bina, Thomas Basler, Matteo Dainese, Hans-Joachim Schulze
  • Publication number: 20190214490
    Abstract: A power semiconductor device having an IGBT-configuration includes at least one power cell. Each power cell includes at least three trenches arranged laterally adjacent to each other. Each trench extends into a semiconductor body along a vertical direction and includes an insulator that insulates a respective electrode from the semiconductor body. The at least three trenches include at least one control trench whose electrode is electrically coupled to a control terminal, and a source trench whose electrode is electrically coupled to a first load terminal. An active mesa for conduction of at least a part of the load current is laterally confined at least by one of the at least one control trench and includes at least a respective section of each of a source region and a channel region. An auxiliary mesa is laterally confined by the source trench and one of the at least one control trench.
    Type: Application
    Filed: January 7, 2019
    Publication date: July 11, 2019
    Inventors: Caspar Leendertz, Markus Bina, Christian Philipp Sandow
  • Publication number: 20190198664
    Abstract: In accordance with an embodiment, a method include switching on a transistor device by generating a first conducting channel in a body region by driving a first gate electrode and, before generating the first conducting channel, generating a second conducting channel in the body region by driving a second gate electrode. The first gate electrode is dielectrically insulated from a body region by a first gate dielectric, and the second gate electrode is dielectrically insulated from the body region by a second gate dielectric, arranged adjacent the first gate electrode, and separated from the first gate electrode by a separation layer. The body region is arranged between a source region and a drift region, and wherein the drift region is arranged between body region and a drain region.
    Type: Application
    Filed: March 5, 2019
    Publication date: June 27, 2019
    Inventors: Markus Bina, Anton Mauder, Jens Barrenscheen