Patents by Inventor Markus Deguenther

Markus Deguenther has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10394129
    Abstract: A microlithographic illumination unit for post-exposure of a photoresist provided on a wafer in a microlithography process, has at least one light source and a light-guiding and light-mixing element for coupling the electromagnetic radiation generated by the light source into the photoresist. This light-guiding and light-mixing element has a first pair of mutually opposite side faces, the maximum spacing of which has a first value. Multiple reflections of the electromagnetic radiation on these side faces take place, wherein the light-guiding and light-mixing element has a second pair of mutually opposite side faces, the maximum spacing of which has a second value. The maximum extent of the light-guiding and light-mixing element in the light propagation direction of the electromagnetic radiation has a third value. This third value is greater than the first value and is smaller than the second value.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: August 27, 2019
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Markus Deguenther, Stig Bieling
  • Patent number: 10281823
    Abstract: An illumination system of a microlithographic projection exposure apparatus includes first and second optical raster plates. An irradiance distribution of projection light on the first and second optical raster plates determines an angular light distribution of the projection light exclusively at a first portion and a second portion, respectively, of an illuminated field. The second portion is distinct from and arranged adjacent to the first portion. It is possible to produce different illumination settings in different adjacent portions on the mask. First and second Fourier optics establish a Fourier relationship between the first and second optical raster plates one the one hand and the first and second portion on the other hand. The first and second Fourier optics have a first and second focal length, respectively, that are variable in response to a focal length change command signal from a control unit.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: May 7, 2019
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Markus Deguenther
  • Patent number: 10274828
    Abstract: A microlithography illumination system includes a first light source configured to generate pulses of light, a second light source configured to generate further pulses of light offset temporally relative to the pulses of light generated by the first light source, an array of optical elements digitally switchable between first and second switching positions, and a control device to drive the optical elements so that during use the switching position of the optical elements is unchanged while any of the first and second light sources generates a light pulse. In the first switching position of the optical elements, the array couples light pulses generated by the first light source into a common beam path of the illumination system. In the second switching position of the optical elements, the array couples light pulses generated by the second light source into a common beam path of the illumination system.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: April 30, 2019
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Markus Deguenther, Vladimir Davydenko, Thomas Korb, Johannes Eisenmenger
  • Publication number: 20190113849
    Abstract: A microlithographic illumination unit for post-exposure of a photoresist provided on a wafer in a microlithography process, has at least one light source and a light-guiding and light-mixing element for coupling the electromagnetic radiation generated by the light source into the photoresist. This light-guiding and light-mixing element has a first pair of mutually opposite side faces, the maximum spacing of which has a first value. Multiple reflections of the electromagnetic radiation on these side faces take place, wherein the light-guiding and light-mixing element has a second pair of mutually opposite side faces, the maximum spacing of which has a second value. The maximum extent of the light-guiding and light-mixing element in the light propagation direction of the electromagnetic radiation has a third value. This third value is greater than the first value and is smaller than the second value.
    Type: Application
    Filed: December 4, 2018
    Publication date: April 18, 2019
    Inventors: Markus Deguenther, Stig Bieling
  • Patent number: 10254466
    Abstract: An optical waveguide serves for guiding illumination light. The waveguide has a waveguide main body for guiding the illumination light between a main body entrance region and a main body exit region. At least one coupling-out device is provided in the main body exit region. Via the coupling-out device, at least one coupling-out illumination light partial beam is coupled out from the illumination light emerging from the waveguide main body. This is done such that the coupling-out illumination light partial beam can be separated from the rest of the illumination light beam emerging from the waveguide main body. This results in a waveguide having improved possibilities for use when guiding illumination light.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: April 9, 2019
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Christian Wald, Stefan Schaff, Markus Deguenther, Daniel Runde
  • Publication number: 20190094704
    Abstract: A microlithography optical system includes a projection objective and an illumination system that includes a temperature compensated polarization-modulating optical element. The temperature compensated polarization-modulating optical element includes a first polarization-modulating optical element of optically active material, the first polarization-modulating optical element having a first specific rotation with a sign. The temperature compensated polarization-modulating optical element includes also includes a second polarization-modulating optical element of optically active material, the second polarization-modulating optical element having a second specific rotation with a sign opposite to the sign of the first specific rotation.
    Type: Application
    Filed: June 4, 2018
    Publication date: March 28, 2019
    Inventors: Damian Fiolka, Markus Deguenther
  • Patent number: 10241416
    Abstract: An illumination system for illuminating a mask in a scanning microlithographic projection exposure apparatus has an objective with an object plane, at least one pupil surface and an image plane in which a mask can be arranged. A beam deflection array of reflective or transparent beam deflection elements is provided, where each beam deflection element is adapted to deflect an impinging light ray by a deflection angle that is variable in response to a control signal. The beam deflection elements are arranged in or in close proximity to the object plane of the objective.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: March 26, 2019
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Markus Deguenther, Michael Layh
  • Patent number: 10216091
    Abstract: A facet mirror for an illumination optical unit for projection lithography has a plurality of used facets, which in each case reflect an illumination light partial beam. The facet mirror has at least one change subunit having a plurality of change facets arranged jointly on a facet carrier, which change facets can be positioned alternatively at the used location of exactly one used facet. This results in a facet mirror with which different illumination geometries or illumination settings can be set operationally reliably and stably.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: February 26, 2019
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Markus Deguenther, Michael Patra
  • Patent number: 10191382
    Abstract: An illumination system of a micro-lithographic projection exposure apparatus is provided, which is configured to illuminate a mask positioned in a mask plane. The system includes a pupil shaping optical subsystem and illuminator optics that illuminate a beam deflecting component. For determining a property of the beam deflecting component, an intensity distribution in a system pupil surface of the illumination system is determined. Then the property of the beam deflecting component is determined such that the intensity distribution produced by the pupil shaping subsystem in the system pupil surface approximates the intensity distribution determined before. At least one of the following aberrations are taken into account in this determination: (i) an aberration produced by the illuminator optics; (ii) an aberration produced by the pupil shaping optical subsystem; (iii) an aberration produced by an optical element arranged between the system pupil surface and the mask plane.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: January 29, 2019
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Erich Schubert, Alexander Kohl, Gerhard-Wilhelm Ziegler, Michael Patra, Markus Deguenther, Michael Layh
  • Publication number: 20190011839
    Abstract: The invention relates to a method and a device for characterizing a mask for microlithography. In a method according to the invention, structures of a mask intended for use in a lithography process in a microlithographic projection exposure apparatus are illuminated by an illumination optical unit, wherein the mask is imaged onto a detector unit by an imaging optical unit, wherein image data recorded by the detector unit are evaluated in an evaluation unit. In this case, for emulating an illumination setting predefined for the lithography process in the microlithographic projection exposure apparatus, the imaging of the mask onto the detector unit is carried out in a plurality of individual imagings which differ from one another with regard to the illumination setting set in the illumination optical unit or the polarization-influencing effect set in the imaging optical unit.
    Type: Application
    Filed: July 3, 2018
    Publication date: January 10, 2019
    Inventors: Holger Seitz, Ute Buttgereit, Thomas Thaler, Thomas Frank, Ulrich Matejka, Markus Deguenther, Robert Birkner, Dominik Grau
  • Patent number: 10151929
    Abstract: An illumination optical unit for projection lithography guides illumination light toward an object field and has a mirror array including a multiplicity of individual mirrors which are tiltable independently. A condenser optical unit transfers an arrangement plane of the mirror array into a pupil plane of the illumination optical unit. An optical hollow waveguide component of the illumination optical unit is upstream of the mirror array in the beam path of the illumination light and homogenizes and stabilizes an illumination light beam incident on the mirror array. An input coupling optical unit is upstream of the hollow waveguide component and couples an incident illumination light beam into the hollow waveguide component. A relay optical unit images a beam exit surface of the hollow waveguide component onto the mirror array. The illumination optical unit is insensitive to light source instabilities.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: December 11, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Markus Deguenther, Thomas Stammler
  • Patent number: 10146135
    Abstract: A microlithography projection exposure apparatus includes illumination optics configured to illuminate object field points of an object field in an object plane, and projection optics configured to image the object field onto an image field in an image plane. The illumination optics includes a multi-mirror array which includes a plurality of mirrors configured to adjust an intensity distribution in exit pupils associated with the object field points. The illumination optics also includes an optical system configured to produce, via an incoherent superposition of illumination rays, a temporal modification of a temporal stabilization of an illumination of the multi-mirror array. The optical system includes a mirror which includes a mirror surface. In addition, the optical system includes an actuator configured to produce a tilt of at least a portion of the mirror surface.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: December 4, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Michael Layh, Markus Deguenther, Michael Patra, Johannes Wangler, Manfred Maul, Damian Fiolka, Gundula Weiss
  • Publication number: 20180335702
    Abstract: An illumination system of a micro-lithographic projection exposure apparatus is provided, which is configured to illuminate a mask positioned in a mask plane. The system includes a pupil shaping optical subsystem and illuminator optics that illuminate a beam deflecting component. For determining a property of the beam deflecting component, an intensity distribution in a system pupil surface of the illumination system is determined. Then the property of the beam deflecting component is determined such that the intensity distribution produced by the pupil shaping subsystem in the system pupil surface approximates the intensity distribution determined before. At least one of the following aberrations are taken into account in this determination: (i) an aberration produced by the illuminator optics; (ii) an aberration produced by the pupil shaping optical subsystem; (iii) an aberration produced by an optical element arranged between the system pupil surface and the mask plane.
    Type: Application
    Filed: April 26, 2018
    Publication date: November 22, 2018
    Inventors: Erich Schubert, Alexander Kohl, Gerhard-Wilhelm Ziegler, Michael Patra, Markus Deguenther, Michael Layh
  • Patent number: 10133183
    Abstract: An optical component for a projection exposure apparatus includes a multiplicity of variably positionable beam-guiding elements which serve as pupil facets. The optical component can be arranged in the beam path of the projection optical unit.
    Type: Grant
    Filed: September 6, 2016
    Date of Patent: November 20, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Michael Patra, Markus Deguenther, Paul Buettner, Willi Heintel, Henner Baitinger
  • Publication number: 20180314165
    Abstract: An illumination system of a microlithographic projection exposure apparatus includes a spatial light modulator which varies an intensity distribution in a pupil surface. The modulator includes an array of mirrors that reflect impinging projection light into directions that depend on control signals applied to the mirrors. A prism, which directs the projection light towards the spatial light modulator, has a double pass surface on which the projection light impinges twice, namely a first time when leaving the prism and before it is reflected by the mirrors, and a second time when entering the prism and after it has been reflected by the mirrors. A pupil perturbation suppressing mechanism is provided that reduces reflections of projection light when it impinges the first time on the double pass surface, and/or prevents that light portions being a result of such reflections contribute to the intensity distribution in the pupil surface.
    Type: Application
    Filed: March 21, 2018
    Publication date: November 1, 2018
    Inventors: Markus Deguenther, Damian Fiolka, Gerhard-Wilhelm Ziegler
  • Publication number: 20180284622
    Abstract: The disclosure provides an illumination system of a microlithographic projection device having an image plane, in which a mask can be arranged, and a first object plane, which is optically conjugate to the image plane. A first illumination optical unit illuminates the first object plane with first projection light so that the first projection light has a first illumination angle distribution in the image plane. A second illumination optical unit illuminates a second object plane, which is optically conjugate to the image plane, with second projection light so that the second projection light has a second illumination angle distribution differing from the first illumination angle distribution in the image plane. An optical integrator is arranged exclusively in the light path of the first projection light.
    Type: Application
    Filed: June 4, 2018
    Publication date: October 4, 2018
    Inventors: Markus Deguenther, Vladimir Davydenko, Dirk Juergens, Thomas Korb
  • Patent number: 10088754
    Abstract: A raster arrangement includes at least one raster element of a first type and at least one raster element of a second type. Each raster element of the first type has a first bundle-influencing effect. Each raster element of the second type has a second bundle-influencing effect which is different from the first bundle-influencing effect. Each raster element of the first type is located in a first area of the raster arrangement. Each raster element of the second type is located in a second area of the raster arrangement which is different from the first area of the raster arrangement.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: October 2, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Axel Scholz, Frank Schlesener, Nils Haverkamp, Vladimir Davydenko, Michael Gerhard, Gerhard-Wilhelm Ziegler, Mirco Kern, Thomas Bischoff, Thomas Stammler, Stephan Kellner, Manfred Maul, Daniel Walldorf, Igor Hurevich, Markus Deguenther
  • Publication number: 20180246415
    Abstract: Microlithographic illumination system includes individually drivable elements to variably illuminate a pupil surface of the system. Each element deviates an incident light beam based on a control signal applied to the element. The system also includes an instrument to provide a measurement signal, and a model-based state estimator configured to compute, for each element, an estimated state vector based on the measurement signal. The estimated state vector represents: a deviation of a light beam caused by the element; and a time derivative of the deviation. The illumination system further includes a regulator configured to receive, for each element: a) the estimated state vector; and b) target values for: i) the deviation of the light beam caused by the deviating element; and ii) the time derivative of the deviation.
    Type: Application
    Filed: January 24, 2018
    Publication date: August 30, 2018
    Inventors: Stefan Xalter, Yim-Bun Patrick Kwan, Andras G. Major, Manfred Maul, Johannes Eisenmenger, Damian Fiolka, Jan Horn, Markus Deguenther, Florian Bach, Michael Patra, Johannes Wangler, Michael Layh
  • Patent number: 10061203
    Abstract: A beam distribution optical unit serves for splitting an incident beam of illumination light into at least two emergent illumination-light beams. The beam distribution optical unit has at least one blazed reflection grating having reflective grating structures. The result is an optical unit in which a plurality of illumination-light beams are efficiently produced from one incident beam of illumination light.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: August 28, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Markus Deguenther, Michael Patra, Thomas Korb
  • Patent number: 10042248
    Abstract: An illumination optical unit for a mask inspection system is used with EUV illumination light. A hollow waveguide of the illumination optical unit serves for guiding the illumination light. The hollow waveguide has an entry opening for the illumination light and an exit opening for the illumination light. An imaging mirror optical unit, arranged downstream of the hollow waveguide serves to image the exit opening into an illumination field. This results in an illumination optical unit, the throughput of which is optimized for the EUV illumination light.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: August 7, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Markus Degünther, Thomas Korb