Patents by Inventor Marom Bikson

Marom Bikson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200001096
    Abstract: Methods and systems for providing dosed and calibrated thermal stimulation using an implantable stimulation device are disclosed. Aspects of the disclosure provide bioheat models based on physiological and thermal properties of target anatomy and thermopole algorithms that interact with the bioheat models to derive thermal stimulation parameters for providing dosed and calibrated thermal stimulation. Also, graphical user interfaces (GUIs) are disclosed for configuring and targeting heat delivery into specific targets.
    Type: Application
    Filed: June 17, 2019
    Publication date: January 2, 2020
    Inventors: Tianhe Zhang, Bradley Hershey, Rosana Esteller, Marom Bikson
  • Patent number: 10143832
    Abstract: An apparatus for delivering therapeutic electrostimulation across a tissue surface includes a current source, a low current component adapted to contact the tissue surface, a first electrode assembly electrically connected to the current source and supported by the low current component, a second electrode assembly electrically connected to the current source and supported by the low current component and a conductive fluid supported by the low current component for facilitating a flow of electric current across the tissue surface. At least one of the first and second electrodes assemblies includes at least one of a magnetic electrode, a high current component and a non-current component.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: December 4, 2018
    Assignee: RESEARCH FOUNDATION OF THE CITY UNIVERSITY OF NEW YORK
    Inventors: Marom Bikson, Abhishek Datta, Niranjan Khadka
  • Patent number: 9956395
    Abstract: An electrode assembly includes a substantially porous element configured to be coupled to an electrode for delivery of electrical current to a patient in a neurostimulation procedure. The substantially porous material defining a contact surface, of which at least a portion contacts the patient during the neurostimulation procedure. A first insulating member is coupled to the substantially porous element and exposed at the contact surface to prevent a portion of the contact surface from contacting the patient to deliver the electrical current during the neurostimulation procedure.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: May 1, 2018
    Assignee: RESEARCH FOUNDATION OF THE CITY UNIVERSITY OF NEW YORK
    Inventors: Marom Bikson, Gregory Kronberg, Tamer N. Naguib, Denis Arce, Preet Minhas
  • Publication number: 20170172477
    Abstract: The present invention provides for a handheld apparatus for in vivo examination of the viability of a biological tissue.
    Type: Application
    Filed: March 3, 2017
    Publication date: June 22, 2017
    Inventors: Prasad Adusumilli, MAROM BIKSON
  • Patent number: 9440063
    Abstract: An electrode assembly for neuro-cranial stimulation includes an electrode, a conductive gel, and an adapter including an interior compartment for positioning the electrode relative to the adapter and for receiving and retaining the conductive gel. The conductive gel contacts the electrode along an electrode-gel interface. An orifice at one end of the interior compartment and adjacent to a positioning surface of the adapter for positioning the electrode assembly against a skin surface of a user enables the conductive gel is able to contact the skin surface of the user to define a gel-skin interface, such that a minimum distance between the electrode-gel interface and the gel-skin interface is maintained between 0.25 cm and 1.3 cm. An electrode assembly mounting apparatus is provided for adjustably positioning a plurality of electrode assemblies against target positions on the cranium.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: September 13, 2016
    Assignee: RESEARCH FOUNDATION OD THE CITY UNIVERSITY OF NEW YORK
    Inventors: Johnson Ho, Preet Minhas, Marom Bikson, Abhishek Datta, Varun Bansal, Jinal Patel, Dan Steingart, Jorge Vega, Lucas Parra
  • Patent number: 9339642
    Abstract: In some embodiments of the present disclosure, systems and methods for effecting a physiological effect are provided. In some embodiments, a system is provided which comprises a plurality of current sources, where each current source having a positive output and a negative output and each being configured to provide a first current. The system may also include a plurality of stimulating electrodes electrically connected with the plurality of current sources such that at least a pair of the stimulating electrodes share at least one output of at least one of the plurality of current sources. The stimulating electrodes may be configured to provide electrical energy to tissue of a patient at the first current. The system may further include at least one sentinel electrode, and a first voltage monitor configured to monitor a first voltage across the at least one sentinel electrode and at least one of the plurality of stimulating electrodes.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: May 17, 2016
    Assignee: Soterix Medical, Inc.
    Inventors: Marom Bikson, Lucas Cristobal Parra, Abhishek Datta, Niranjan Khadka, Shiraz Azar Macuff
  • Publication number: 20160129237
    Abstract: An apparatus for delivering therapeutic electrostimulation across a tissue surface includes a current source, a low current component adapted to contact the tissue surface, a first electrode assembly electrically connected to the current source and supported by the low current component, a second electrode assembly electrically connected to the current source and supported by the low current component and a conductive fluid supported by the low current component for facilitating a flow of electric current across the tissue surface. At least one of the first and second electrodes assemblies includes at least one of a magnetic electrode, a high current component and a non-current component.
    Type: Application
    Filed: November 9, 2015
    Publication date: May 12, 2016
    Inventors: Marom Bikson, Abhishek Datta, Niranjan Khadka
  • Patent number: 8965514
    Abstract: A method includes coupling electrodes to a patient's head and identifying whether any of the electrodes form a functional set, such that a desired therapeutic effect is achieved when the two or more electrodes deliver a total amount of current to the patient regardless of what portion of the total amount of current each respective electrode carries. One or more constant current sources are provided, each having a supply and return terminal, which supply and return equal amounts of current at any given time. The constant current source(s) are coupled to the electrodes in such a manner that each supply terminal and each return terminal is coupled to no more than the electrodes of a single one of the functional sets, if any, or to a single one of the electrodes not included in one of the functional sets.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: February 24, 2015
    Assignee: Research Foundation of the City University of New York
    Inventors: Marom Bikson, Abhishek Datta, Varun Bansal, Lucas C. Parra, Xiang Zhou
  • Patent number: 8818515
    Abstract: Methods and systems for delivering voltage limited neurostimulation to a patient. In one aspect, a method includes initiating a flow of electrical current through a first electrode and a second electrode coupled to the patient and increasing the flow of electrical current toward a target value by increasing a voltage across the first electrode and second electrode. Prior to reaching the target value of electrical current, the method includes preventing the voltage across the first electrode and second electrode from increasing beyond a first predetermined limit; and subsequently, maintaining the voltage across the first electrode and second electrode at or within a predetermined range that does not exceed the first predetermined limit. The amplitude of the electrical current continues to increase toward the target value during at least part of a time when the voltage across the first electrode and the second electrode is maintained within the predetermined range.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: August 26, 2014
    Assignee: Research Foundation of the City University of New York
    Inventors: Marom Bikson, Christoph Hahn, Shiraz A. Macuff, Preet Minhas, Asif Rahman, Justin Keith Rice
  • Patent number: 8718778
    Abstract: There is provided method and apparatus for enhancing focality of neurocranial electrostimulation, including: providing a first plurality of electrodes having at least one electrode; providing a second plurality of electrodes having at least two electrodes; locating the first and the second plurality of electrodes on cranium of a subject and supplying electric current of opposite polarities to the first and the second plurality of electrodes. At least one electrode of the first plurality of electrodes is surrounded by at least two electrodes of the second plurality of electrodes. The enhanced focal stimulation may be used to treat ailments or augment cognitive performance. There are also provided methods for treating brain related ailments and performance augmentation.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: May 6, 2014
    Assignee: Research Foundation of the City University of New York
    Inventors: Marom Bikson, Abhishek Datta, Fortunato Battaglia, Maged Elwassif
  • Publication number: 20130268038
    Abstract: An electrode assembly includes a substantially porous element configured to be coupled to an electrode for delivery of electrical current to a patient in a neurostimulation procedure. The substantially porous material defining a contact surface, of which at least a portion contacts the patient during the neurostimulation procedure. A first insulating member is coupled to the substantially porous element and exposed at the contact surface to prevent a portion of the contact surface from contacting the patient to deliver the electrical current during the neurostimulation procedure.
    Type: Application
    Filed: October 19, 2011
    Publication date: October 10, 2013
    Applicant: Research Foundation of the City University of New York
    Inventors: Marom Bikson, Gregory Kronberg, Tamer N. Naguib, Denis Arce, Preet Minhas
  • Publication number: 20130226267
    Abstract: A method to control tissue/device heating at implantable medical devices including neuroprosthetic devices. In a first embodiment, thermal conductivity of components of the implantable medical devices including the neuroprosthetic devices is increased. In a second embodiment, the implantable medical devices including the neuroprosthetic devices are cooled by using heat-sinks. In a third embodiment, portions of the implantable medical devices including the neuroprosthetic devices are replaced with specific thermal properties. In a fourth embodiment, the implantable medical devices including the neuroprosthetic devices are coated with a drug/material that will induce surrounding tissue to become more resistant to temperature increases. In a fifth embodiment, the temperature increase near the implantable devices including the neuroprosthetic devices is determined using a modified bio-heat transfer model. In a sixth embodiment, the shape of the outer or the inner surface of the device is modified.
    Type: Application
    Filed: February 21, 2009
    Publication date: August 29, 2013
    Inventors: Marom Bikson, Maged M. Elwassif, Qingjun Kong
  • Patent number: 8494627
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for developing transcranial electrical stimulation protocols are disclosed. In one aspect, a method includes forming a first array of electrodes and optimizing a plurality of electrode parameters within the first array of electrodes to achieve a desired physiological response; identifying one or more electrodes within the optimized first array that have relatively low current compared to the remaining electrodes in the first array; removing the identified low current electrodes from the first array to form a second array of electrodes, wherein the number of electrodes in the second array is less than the number of electrodes in the first array and optimizing a plurality of electrode parameters with the second array of electrodes to achieve a desired physiological response.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: July 23, 2013
    Assignee: Research Foundation of the City University of New York
    Inventors: Marom Bikson, Abhishek Datta, Lucas C. Parra, Jacek Dmochowski, Yuzhuo Su
  • Publication number: 20130184779
    Abstract: Methods and systems for delivering voltage limited neurostimulation to a patient. In one aspect, a method includes initiating a flow of electrical current through a first electrode and a second electrode coupled to the patient and increasing the flow of electrical current toward a target value by increasing a voltage across the first electrode and second electrode. Prior to reaching the target value of electrical current, the method includes preventing the voltage across the first electrode and second electrode from increasing beyond a first predetermined limit; and subsequently, maintaining the voltage across the first electrode and second electrode at or within a predetermined range that does not exceed the first predetermined limit. The amplitude of the electrical current continues to increase toward the target value during at least part of a time when the voltage across the first electrode and the second electrode is maintained within the predetermined range.
    Type: Application
    Filed: January 13, 2012
    Publication date: July 18, 2013
    Inventors: Marom Bikson, Christoph Hahn, Shiraz A. Macuff, Preet Minhas, Asif Rahman, Justin Keith Rice
  • Publication number: 20120265261
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for developing transcranial electrical stimulation protocols are disclosed. In one aspect, a method includes forming a first array of electrodes and optimizing a plurality of electrode parameters within the first array of electrodes to achieve a desired physiological response; identifying one or more electrodes within the optimized first array that have relatively low current compared to the remaining electrodes in the first array; removing the identified low current electrodes from the first array to form a second array of electrodes, wherein the number of electrodes in the second array is less than the number of electrodes in the first array and optimizing a plurality of electrode parameters with the second array of electrodes to achieve a desired physiological response.
    Type: Application
    Filed: November 11, 2011
    Publication date: October 18, 2012
    Inventors: Marom Bikson, Abhishek Datta, Lucas C. Parra, Jacek Dmochowski, Yuzhuo Su
  • Publication number: 20120245653
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for developing transcranial electrical stimulation protocols are disclosed. In one aspect, a method includes the actions of accepting an image model of target tissue, obtaining a forward model having a first electrode configuration and first electrical stimulation parameters based on electrical stimulation of the target tissue, accepting electrode configuration changes or electrical stimulation parameter changes resulting in a second electrode configuration or second electrical stimulation parameters, determining an optimized tissue model using a least square methodology and based on the second electrode configuration or second electrical stimulation parameter changes, comparing the optimized tissue model with a desired outcome, and providing a confirmation of the optimized model with the desired outcome.
    Type: Application
    Filed: April 13, 2010
    Publication date: September 27, 2012
    Applicant: Research Foundation of the City University of New York
    Inventors: Marom Bikson, Abhishek Datta, Lucas C. Parra, Jacek Dmochowski, Yuzhuo Su
  • Publication number: 20120209346
    Abstract: A method includes coupling electrodes to a patient's head and identifying whether any of the electrodes form a functional set, such that a desired therapeutic effect is achieved when the two or more electrodes deliver a total amount of current to the patient regardless of what portion of the total amount of current each respective electrode carries. One or more constant current sources are provided, each having a supply and return terminal, which supply and return equal amounts of current at any given time. The constant current source(s) are coupled to the electrodes in such a manner that each supply terminal and each return terminal is coupled to no more than the electrodes of a single one of the functional sets, if any, or to a single one of the electrodes not included in one of the functional sets.
    Type: Application
    Filed: April 13, 2010
    Publication date: August 16, 2012
    Applicant: Research Foundation of the City University of New York
    Inventors: Marom Bikson, Abhishek Datta, Varun Bansal, Lucas C Parra, Xiang Zhou
  • Publication number: 20110319975
    Abstract: An electrode assembly for neuro-cranial stimulation includes an electrode, a conductive gel, and an adapter including an interior compartment for positioning the electrode relative to the adapter and for receiving and retaining the conductive gel. The conductive gel contacts the electrode along an electrode-gel interface. An orifice at one end of the interior compartment and adjacent to a positioning surface of the adapter for positioning the electrode assembly against a skin surface of a user enables the conductive gel is able to contact the skin surface of the user to define a gel-skin interface, such that a minimum distance between the electrode-gel interface and the gel-skin interface is maintained between 0.25 cm and 1.3 cm. An electrode assembly mounting apparatus is provided for adjustably positioning a plurality of electrode assemblies against target positions on the cranium.
    Type: Application
    Filed: December 30, 2009
    Publication date: December 29, 2011
    Applicant: Research Foundation of the City University of New York
    Inventors: Johnson Ho, Preet Minhas, Marom Bikson, Abhishek Datta, Varun Bansal, Jinal Patel, Dan Steingart, Jorge Vega, Lucas Parra
  • Publication number: 20110224518
    Abstract: The present invention provides for a handheld apparatus for in vivo examination of the viability of a biological tissue.
    Type: Application
    Filed: July 22, 2009
    Publication date: September 15, 2011
    Inventors: Jaafar Tindi, Farah Khan, Christopher D. Hue, Chinedu Chukuigwe, Saumya Banerjee, Rohan Shah, Alina Levchuck, Marom Bikson, Luis Cardoso, Prasad Adusumilli, Nabil Rizk, Luis Carlos Oliveira, Varun Bansai
  • Publication number: 20110144716
    Abstract: There is provided method and apparatus for enhancing focality of neurocranial electrostimulation, including: providing a first plurality of electrodes having at least one electrode; providing a second plurality of electrodes having at least two electrodes; locating the first and the second plurality of electrodes on cranium of a subject and supplying electric current of opposite polarities to the first and the second plurality of electrodes. At least one electrode of the first plurality of electrodes is surrounded by at least two electrodes of the second plurality of electrodes. The enhanced focal stimulation may be used to treat ailments or augment cognitive performance. There are also provided methods for treating brain related ailments and performance augmentation.
    Type: Application
    Filed: September 18, 2008
    Publication date: June 16, 2011
    Applicant: Research Foundation of The City University of New York
    Inventors: Marom Bikson, Abhishek Datta, Fortunato Battaglia, Maged Elwassif