Patents by Inventor Martin C. Roberts

Martin C. Roberts has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9853037
    Abstract: Some embodiments include an integrated assembly with a semiconductor channel material having a boundary region where a more-heavily-doped region interfaces with a less-heavily-doped region. The more-heavily-doped region and the less-heavily-doped region have majority carriers of the same conductivity type. The integrated assembly includes a gating structure adjacent the semiconductor channel material and having a gating region and an interconnecting region of a common and continuous material. The gating region has a length extending along a segment of the more-heavily-doped region, a segment of the less-heavily-doped region, and the boundary region. The interconnecting region extends laterally outward from the gating region on a side opposite the semiconductor channel region, and is narrower than the length of the gating region. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: December 26, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Justin B. Dorhout, Kunal R. Parekh, Martin C. Roberts, Mohd Kamran Akhtar, Chet E. Carter, David Daycock
  • Publication number: 20170317098
    Abstract: Some embodiments include an integrated structure having a conductive material, a select device gate material over the conductive material, and vertically-stacked conductive levels over the select device gate material. Vertically-extending monolithic channel material is adjacent the select device gate material and the conductive levels. The monolithic channel material contains a lower segment adjacent the select device gate material and an upper segment adjacent the conductive levels. A first vertically-extending region is between the lower segment of the monolithic channel material and the select device gate material. The first vertically-extending region contains a first material. A second vertically-extending region is between the upper segment of the monolithic channel material and the conductive levels. The second vertically-extending region contains a material which is different in composition from the first material.
    Type: Application
    Filed: July 17, 2017
    Publication date: November 2, 2017
    Inventors: Justin B. Dorhout, David Daycock, Kunal R. Parekh, Martin C. Roberts, Yushi Hu
  • Publication number: 20170301685
    Abstract: Some embodiments include an integrated structure having vertically-stacked conductive levels alternating with dielectric levels. A layer over the conductive levels includes silicon, nitrogen, and one or more of carbon, oxygen, boron and phosphorus. In some embodiments the vertically-stacked conductive levels are wordline levels within a NAND memory array. Some embodiments include an integrated structure having vertically-stacked conductive levels alternating with dielectric levels. Vertically-stacked NAND memory cells are along the conductive levels within a memory array region. A staircase region is proximate the memory array region. The staircase region has electrical contacts in one-to-one correspondence with the conductive levels. A layer is over the memory array region and over the staircase region. The layer includes silicon, nitrogen, and one or more of carbon, oxygen, boron and phosphorus.
    Type: Application
    Filed: April 19, 2016
    Publication date: October 19, 2017
    Inventors: Justin B. Dorhout, Fei Wang, Chet E. Carter, Ian Laboriante, John D. Hopkins, Kunal Shrotri, Ryan Meyer, Vinayak Shamanna, Kunal R. Parekh, Martin C. Roberts, Matthew Park
  • Patent number: 9741732
    Abstract: Some embodiments include an integrated structure having a conductive material, a select device gate material over the conductive material, and vertically-stacked conductive levels over the select device gate material. Vertically-extending monolithic channel material is adjacent the select device gate material and the conductive levels. The monolithic channel material contains a lower segment adjacent the select device gate material and an upper segment adjacent the conductive levels. A first vertically-extending region is between the lower segment of the monolithic channel material and the select device gate material. The first vertically-extending region contains a first material. A second vertically-extending region is between the upper segment of the monolithic channel material and the conductive levels. The second vertically-extending region contains a material which is different in composition from the first material.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: August 22, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Justin B. Dorhout, David Daycock, Kunal R. Parekh, Martin C. Roberts, Yushi Hu
  • Publication number: 20170148802
    Abstract: Some embodiments include an integrated assembly with a semiconductor channel material having a boundary region where a more-heavily-doped region interfaces with a less-heavily-doped region. The more-heavily-doped region and the less-heavily-doped region have the same majority carriers. The integrated assembly includes a gating structure adjacent the semiconductor channel material and having a gating region and an interconnecting region of a common and continuous material. The gating region has a length extending along a segment of the more-heavily-doped region, a segment of the less-heavily-doped region, and the boundary region. The interconnecting region extends laterally outward from the gating region on a side opposite the semiconductor channel region, and is narrower than the length of the gating region. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: November 23, 2015
    Publication date: May 25, 2017
    Inventors: Justin B. Dorhout, Kunal R. Parekh, Martin C. Roberts, Mohd Kamran Akhtar, Chet E. Carter, David Daycock
  • Publication number: 20170054036
    Abstract: Some embodiments include an integrated structure having a conductive material, a select device gate material over the conductive material, and vertically-stacked conductive levels over the select device gate material. Vertically-extending monolithic channel material is adjacent the select device gate material and the conductive levels. The monolithic channel material contains a lower segment adjacent the select device gate material and an upper segment adjacent the conductive levels. A first vertically-extending region is between the lower segment of the monolithic channel material and the select device gate material. The first vertically-extending region contains a first material. A second vertically-extending region is between the upper segment of the monolithic channel material and the conductive levels. The second vertically-extending region contains a material which is different in composition from the first material.
    Type: Application
    Filed: August 19, 2015
    Publication date: February 23, 2017
    Inventors: Justin B. Dorhout, David Daycock, Kunal R. Parekh, Martin C. Roberts, Yushi Hu
  • Patent number: 9391092
    Abstract: A circuit structure includes a substrate having an array region and a peripheral region. The substrate in the array and peripheral regions includes insulator material over first semiconductor material, conductive material over the insulator material, and second semiconductor material over the conductive material. The array region includes vertical circuit devices which include the second semiconductor material. The peripheral region includes horizontal circuit devices which include the second semiconductor material. The horizontal circuit devices in the peripheral region individually have a floating body which includes the second semiconductor material. The conductive material in the peripheral region is under and electrically coupled to the second semiconductor material of the floating bodies. Conductive straps in the array region are under the vertical circuit devices.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: July 12, 2016
    Assignee: Micron Technology, Inc.
    Inventors: John K. Zahurak, Sanh D. Tang, Lars P. Heineck, Martin C. Roberts, Wolfgang Mueller, Haitao Liu
  • Publication number: 20160056175
    Abstract: A circuit structure includes a substrate having an array region and a peripheral region. The substrate in the array and peripheral regions includes insulator material over first semiconductor material, conductive material over the insulator material, and second semiconductor material over the conductive material. The array region includes vertical circuit devices which include the second semiconductor material. The peripheral region includes horizontal circuit devices which include the second semiconductor material. The horizontal circuit devices in the peripheral region individually have a floating body which includes the second semiconductor material. The conductive material in the peripheral region is under and electrically coupled to the second semiconductor material of the floating bodies. Conductive straps in the array region are under the vertical circuit devices.
    Type: Application
    Filed: November 2, 2015
    Publication date: February 25, 2016
    Inventors: John K. Zahurak, Sanh D. Tang, Lars P. Heineck, Martin C. Roberts, Wolfgang Mueller, Haitao Liu
  • Patent number: 9269795
    Abstract: A circuit structure includes a substrate having an array region and a peripheral region. The substrate in the array and peripheral regions includes insulator material over first semiconductor material, conductive material over the insulator material, and second semiconductor material over the conductive material. The array region includes vertical circuit devices which include the second semiconductor material. The peripheral region includes horizontal circuit devices which include the second semiconductor material. The horizontal circuit devices in the peripheral region individually have a floating body which includes the second semiconductor material. The conductive material in the peripheral region is under and electrically coupled to the second semiconductor material of the floating bodies. Conductive straps in the array region are under the vertical circuit devices.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: February 23, 2016
    Assignee: Micron Technology, Inc.
    Inventors: John K. Zahurak, Sanh D. Tang, Lars P. Heineck, Martin C. Roberts, Wolfgang Mueller, Haitao Liu
  • Publication number: 20140273358
    Abstract: A circuit structure includes a substrate having an array region and a peripheral region. The substrate in the array and peripheral regions includes insulator material over first semiconductor material, conductive material over the insulator material, and second semiconductor material over the conductive material. The array region includes vertical circuit devices which include the second semiconductor material. The peripheral region includes horizontal circuit devices which include the second semiconductor material. The horizontal circuit devices in the peripheral region individually have a floating body which includes the second semiconductor material. The conductive material in the peripheral region is under and electrically coupled to the second semiconductor material of the floating bodies. Conductive straps in the array region are under the vertical circuit devices.
    Type: Application
    Filed: May 27, 2014
    Publication date: September 18, 2014
    Applicant: Micron Technology, Inc.
    Inventors: John K. Zahurak, Sanh D. Tang, Lars P. Heineck, Martin C. Roberts, Wolfgang Mueller, Haitao Liu
  • Patent number: 8772848
    Abstract: A circuit structure includes a substrate having an array region and a peripheral region. The substrate in the array and peripheral regions includes insulator material over first semiconductor material, conductive material over the insulator material, and second semiconductor material over the conductive material. The array region includes vertical circuit devices which include the second semiconductor material. The peripheral region includes horizontal circuit devices which include the second semiconductor material. The horizontal circuit devices in the peripheral region individually have a floating body which includes the second semiconductor material. The conductive material in the peripheral region is under and electrically coupled to the second semiconductor material of the floating bodies. Conductive straps in the array region are under the vertical circuit devices.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: July 8, 2014
    Assignee: Micron Technology, Inc.
    Inventors: John K. Zahurak, Sanh D. Tang, Lars P. Heineck, Martin C. Roberts, Wolfgang Mueller, Haitao Liu
  • Publication number: 20130026471
    Abstract: A circuit structure includes a substrate having an array region and a peripheral region. The substrate in the array and peripheral regions includes insulator material over first semiconductor material, conductive material over the insulator material, and second semiconductor material over the conductive material. The array region includes vertical circuit devices which include the second semiconductor material. The peripheral region includes horizontal circuit devices which include the second semiconductor material. The horizontal circuit devices in the peripheral region individually have a floating body which includes the second semiconductor material. The conductive material in the peripheral region is under and electrically coupled to the second semiconductor material of the floating bodies. Conductive straps in the array region are under the vertical circuit devices.
    Type: Application
    Filed: July 26, 2011
    Publication date: January 31, 2013
    Inventors: John K. Zahurak, Sanh D. Tang, Lars P. Heineck, Martin C. Roberts, Wolfgang Mueller, Haitao Liu
  • Patent number: 7332811
    Abstract: A method for forming an electrical interconnect overlying a buried contact region of a substrate is characterized by a deposition of a first polycrystalline silicon layer and the patterning and etching of same to form a via. The via is formed in the first polycrystalline silicon layer to expose the substrate and a second polycrystalline silicon layer is formed in the via to contact the substrate. Portions of the second polycrystalline silicon layer overlying the first polycrystalline silicon layer are removed eliminating any horizontal interface between the two polycrystalline silicon layers. The first polycrystalline silicon layer remaining after the etch is then patterned to form an electrical interconnect.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: February 19, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Martin C. Roberts, Sanh D. Tang
  • Patent number: 7160801
    Abstract: A method for forming an electrical interconnect overlying a buried contact region of a substrate is characterized by a deposition of a first polycrystalline silicon layer and the patterning and etching of same to form a via. The via is formed in the first polycrystalline silicon layer to expose the substrate and a second polycrystalline silicon layer is formed in the via to contact the substrate. Portions of the second polycrystalline silicon layer overlying the first polycrystalline silicon layer are removed eliminating any horizontal interface between the two polycrystalline silicon layers. The first polycrystalline silicon layer remaining after the etch is then patterned to form an electrical interconnect.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: January 9, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Martin C. Roberts, Sanh D. Tang
  • Patent number: 6740573
    Abstract: A method for forming an electrical interconnect overlying a buried contact region of a substrate is characterized by a deposition of a first polycrystalline silicon layer and the patterning and etching of same to form a via. The via is formed in the first polycrystalline silicon layer to expose the substrate and a second polycrystalline silicon layer is formed in the via to contact the substrate. Portions of the second polycrystalline silicon layer overlying the first polycrystalline silicon layer are removed eliminating any horizontal interface between the two polycrystalline silicon layers. The first polycrystalline silicon layer remaining after the etch is then patterned to form an electrical interconnect.
    Type: Grant
    Filed: February 17, 1995
    Date of Patent: May 25, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Martin C. Roberts, Sanh D. Tang
  • Patent number: 6596632
    Abstract: A method for forming an electrical interconnect overlying a buried contact region of a substrate is characterized by a deposition of a first polycrystalline silicon layer and the patterning and etching of same to form a via. The via is formed in the first polycrystalline silicon layer to expose the substrate and a second polycrystalline silicon layer is formed in the via to contact the substrate. Portions of the second polycrystalline silicon layer overlying the first polycrystalline silicon layer are removed eliminating any horizontal interface between the two polycrystalline silicon layers. The first polycrystalline silicon layer remaining after the etch is then patterned to form an electrical interconnect.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: July 22, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Martin C. Roberts, Sanh D. Tang
  • Publication number: 20020063283
    Abstract: A method of fabricating an integrated circuit on a wafer includes forming a gate electrode stack over a gate dielectric and forming nitride spacers along sidewalls of the gate electrode stack other than along lowermost portions of the sidewalls. Subsequently, a reoxidation process is performed with respect to the gate dielectric. By providing the nitride spacers along exposed surfaces of conductive barrier and metal layers of the word line stack, those surfaces can be passivated, thereby preventing or reducing the conversion of those layers to non-conductive compounds during the reoxidation process. At the same time, the nitride spacers can be formed so that they do not interfere with the subsequent reoxidation of the gate dielectric. An integrated circuit having a gate electrode stack with nitride spacers extending along sidewalls of the gate electrode stack other than along lowermost portions of the sidewalls is also disclosed.
    Type: Application
    Filed: May 25, 2000
    Publication date: May 30, 2002
    Inventors: Pai-Hung Pan, Martin C. Roberts, Gurtej S. Sandhu, Weimin Li, Christopher W. Hill, Vishnu K. Agarwal
  • Publication number: 20020025672
    Abstract: A method for forming an electrical interconnect overlying a buried contact region of a substrate is characterized by a deposition of a first polycrystalline silicon layer and the patterning and etching of same to form a via. The via is formed in the first polycrystalline silicon layer to expose the substrate and a second polycrystalline silicon layer is formed in the via to contact the substrate. Portions of the second polycrystalline silicon layer overlying the first polycrystalline silicon layer are removed eliminating any horizontal interface between the two polycrystalline silicon layers. The first polycrystalline silicon layer remaining after the etch is then patterned to form an electrical interconnect.
    Type: Application
    Filed: February 17, 1995
    Publication date: February 28, 2002
    Inventor: MARTIN C. ROBERTS
  • Publication number: 20010012691
    Abstract: A method for forming an electrical interconnect overlying a buried contact region of a substrate is characterized by a deposition of a first polycrystalline silicon layer and the patterning and etching of same to form a via. The via is formed in the first polycrystalline silicon layer to expose the substrate and a second polycrystalline silicon layer is formed in the via to contact the substrate. Portions of the second polycrystalline silicon layer overlying the first polycrystalline silicon layer are removed eliminating any horizontal interface between the two polycrystalline silicon layers. The first polycrystalline silicon layer remaining after the etch is then patterned to form an electrical interconnect.
    Type: Application
    Filed: March 13, 2001
    Publication date: August 9, 2001
    Applicant: Micron Technology, Inc.
    Inventors: Martin C. Roberts, Sanh D. Tang
  • Publication number: 20010000760
    Abstract: A method for forming an electrical interconnect overlying a buried contact region of a substrate is characterized by a deposition of a first polycrystalline silicon layer and the patterning and etching of same to form a via. The via is formed in the first polycrystalline silicon layer to expose the substrate and a second polycrystalline silicon layer is formed in the via to contact the substrate. Portions of the second polycrystalline silicon layer overlying the first polycrystalline silicon layer are removed eliminating any horizontal interface between the two polycrystalline silicon layers. The first polycrystalline silicon layer remaining after the etch is then patterned to form an electrical interconnect.
    Type: Application
    Filed: December 21, 2000
    Publication date: May 3, 2001
    Applicant: Micron Technology, Inc.
    Inventors: Martin C. Roberts, Sanh D. Tang