Patents by Inventor Martin Friedrich

Martin Friedrich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210305767
    Abstract: Methods for designing a mode-selective optical device including one or more optical interfaces defining an optical cavity include: defining a loss function within a simulation space encompassing the optical device, the loss function corresponding to an electromagnetic field having an operative wavelength within the optical device resulting from an interaction between an input electromagnetic field at the operative wavelength and the one or more optical interfaces of the optical device; defining an initial structure for each of the one or more optical interfaces, each initial structure being defined using a plurality of voxels; determining values for at least one structural parameter and/or at least one functional parameter of the one or more optical interfaces by solving Maxwell's equations; and defining a final structure of the one or more optical interfaces based on the values for the one or more structural and/or functional parameters.
    Type: Application
    Filed: May 14, 2021
    Publication date: September 30, 2021
    Inventors: Martin Friedrich Schubert, Brian John Adolf, Jesse Lu
  • Patent number: 11092746
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for tuning photonic device performance. In one aspect, a method includes receiving an initial photonic device configuration including multiple coupling structures and multiple photonic components. A first amount of light coupling between a first photonic component and a second photonic component of the multiple photonic components is received, which depends upon a subset of the coupling structures that are located between the first photonic component and the second photonic component. One or more coupling structures of the subset of coupling structures located between the first photonic component and the second photonic component are determined to be removed to cause the light coupling between the first photonic component and the second photonic component to change from the first amount of coupling to a target amount of coupling.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: August 17, 2021
    Assignee: X Development LLC
    Inventors: Brian John Adolf, Martin Friedrich Schubert
  • Publication number: 20210237318
    Abstract: A method for producing a component includes forming a component body having a surface by an additive build-up operation from a hardenable material which is built up in an additive manner or providing the component body having the surface which is formed by the additive build-up operation from the hardenable material which is built up in the additive manner. The method further includes hardening the surface of the component body and forming a surface texture on the surface of the component body prior to the hardening of the surface of the component body and/or during the hardening of the surface of the component body.
    Type: Application
    Filed: May 24, 2019
    Publication date: August 5, 2021
    Inventors: Martin FRIEDRICH, Lukas KNORR
  • Patent number: 11079411
    Abstract: An electromechanical component and an electromechanical component arrangement for proving the existence of a potential difference which consists of a first electrode, a second electrode and a proving structure. The proving structure is configured to be deflected in the event of there being a potential difference. In addition, an electromechanical component is configured to generate a useful effect. A method implements operation of an electromechanical component for proving the existence of a potential difference, other methods implement operation for performing a functional test on the electromechanical component.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: August 3, 2021
    Assignee: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Linus Elsäber, Matthias Schulze, Martin Friedrichs, Christoph Hohle, Detlef Kunze
  • Publication number: 20210215477
    Abstract: A device for determining orientation of an object, including a measurement body, which reflects electromagnetic radiation and can be brought into physical contact with a surface of the object to determine the orientation. The device includes: a measurement carriage movable along the object during the determination of the orientation and which has a sliding surface that can be brought into physical contact with the object; a retaining unit which retains the measurement body and is connected to the measurement carriage so as to be pivotable between a maximal position, in which the measurement body protrudes beyond the sliding surface on the object side, and a minimal position, in which the measurement body does not protrude beyond the sliding surface on the object side; and a restoring device that applies a force to the retaining unit toward the maximal position.
    Type: Application
    Filed: April 18, 2019
    Publication date: July 15, 2021
    Inventors: Martin FRIEDRICH, Frank MÖNSTERS, Tobias HÖHNE, Norman GIESEN
  • Patent number: 11011884
    Abstract: Methods for designing a mode-selective optical device including one or more optical interfaces defining an optical cavity include: defining a loss function within a simulation space encompassing the optical device, the loss function corresponding to an electromagnetic field having an operative wavelength within the optical device resulting from an interaction between an input electromagnetic field at the operative wavelength and the one or more optical interfaces of the optical device; defining an initial structure for each of the one or more optical interfaces, each initial structure being defined using a plurality of voxels; determining values for at least one structural parameter and/or at least one functional parameter of the one or more optical interfaces by solving Maxwell's equations; and defining a final structure of the one or more optical interfaces based on the values for the one or more structural and/or functional parameters.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: May 18, 2021
    Assignee: X Development LLC
    Inventors: Martin Friedrich Schubert, Brian John Adolf, Jesse Lu
  • Patent number: 10930159
    Abstract: A computing system may obtain, for each vehicle of a plurality of vehicles located within a location area, navigation data that indicates a travel route for the vehicle. Based on the navigation data for the plurality of vehicles, the computing system determines a subset of the plurality of vehicles that are within a threshold distance of each other and have respective travel routes that at least partially overlap. The computing system selects, based on a set of selection parameters, two or more vehicles among the subset of vehicles to form a platoon of vehicles that travel in a coordinated arrangement in proximity to each other during at least a portion of the respective travel routes of the selected vehicles. The computing system can direct the selected vehicles to form the platoon of vehicles.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: February 23, 2021
    Assignee: X Development LLC
    Inventors: Johan Ulrich Lewin Jessen, Martin Friedrich Schubert
  • Patent number: 10878732
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for changing a distributed mode loudspeaker's fundamental frequency. One of the systems may include a light emitting diode display that includes an array of pixels, each pixel including, for each color of multiple colors, a directional light emitter and a wide-angle light emitter, a first combination of all the directional light emitters configured to generate a first display image viewable within a first viewing angle, and a second combination of all the wide-angle light emitters configured to generate a second display image concurrently with the generation of the first display image that is viewable within a second viewing angle. The first display image is a different image than the second display image and the first viewing angle is a narrower viewing angle than, and included within, the second viewing angle.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: December 29, 2020
    Assignee: X Development LLC
    Inventors: Martin Friedrich Schubert, Michael Jason Grundmann, Raj B. Apte, Benoit Schillings
  • Publication number: 20200398462
    Abstract: A method for producing a structural component having a foam structure formed by foaming a foamable material, includes the following steps: additively building a receiving component that reproduces the outer geometry of the structural component to be produced at least in some sections, in particular completely, and having a receiving space for receiving foamable material; introducing at least one foamable material into the receiving space of the receiving component; and carrying out at least one measure for foaming the foamable material introduced into the receiving space of the receiving component so as to form the foam structure.
    Type: Application
    Filed: April 17, 2019
    Publication date: December 24, 2020
    Inventors: Martin FRIEDRICH, Lukas KNORR
  • Patent number: 10840676
    Abstract: An optical device that includes: a base layer; a first region supported by the base layer, the first region including a first plurality of quantum-confined nanostructures and having a first density of quantum-confined nanostructures; a second region supported by the base layer, the first and second regions being non-overlapping regions, the second region having a second density of quantum-confined nanostructures lower than the first density; and an optical confinement structure supported by the base layer and configured to guide at least one transverse optical mode between a first end and a second end of the optical confinement structure. The first region substantially overlaps with the at least one transverse optical mode, and the first density varies across a cross-section of the optical device.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: November 17, 2020
    Assignee: X Development LLC
    Inventors: Martin Friedrich Schubert, Michael Jason Grundmann, Jesse Lu, Brian John Adolf
  • Patent number: 10807859
    Abstract: Embodiments of the present invention provide an MEMS actuator with a substrate, at least one post attached to the substrate and a deflectable actuator body that is connected to the at least one post via at least one spring, wherein, during electrostatic, electromagnetic or magnetic force application, the actuator body takes a second position starting from a first position by a tilt-free translational movement, wherein the first position and the second position are different, and wherein in a top view of the MEMS actuator the actuator body is arranged outside an area spanned by the at least one post.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: October 20, 2020
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Peter Duerr, Detlef Kunze, Andreas Neudert, Martin Friedrichs
  • Patent number: 10732340
    Abstract: Techniques of providing illumination to a head-mounted display (HMD) involve providing off-board illumination apart from the HMD. An off-board illumination unit delivers the illumination to the HMD via optical fibers. The optical fibers are lightweight and do not restrict motion of a user. Because the power source is less restricted, the off-board illumination unit provides flexibility in the hardware used to generate the illumination. For example, the illumination unit may use red, green, and blue narrow-band diode lasers. Further, by controlling modes in the fiber and providing additional light-guiding hardware, the angles at which light strikes LCD pixels may be largely restricted to certain specified angles. Restricted angles of incidence enable the use of fast-switching liquid crystals without degrading the image quality. Such a restriction allows for high-resolution imaging using rapid switching of the liquid crystal which enables very low latencies.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: August 4, 2020
    Assignee: GOOGLE LLC
    Inventors: Martin Friedrich Schubert, Michael Grundmann
  • Publication number: 20200239303
    Abstract: In a microelectromechanical component according to the invention, at least one microelectromechanical element (5), electrical contacting elements (3) and an insulation layer (2.2) and thereon a sacrificial layer (2.1) formed with silicon dioxide are formed on a surface of a CMOS circuit substrate (1) and the microelectromechanical element (5) is arranged freely movably in at least a degree of freedom. At the outer edge of the microelectromechanical component, extending radially around all the elements of the CMOS circuit, a gas- and/or fluid-tight closed layer (4) which is resistant to hydrofluoric acid and is formed with silicon, germanium or aluminum oxide is formed on the surface of the CMOS circuit substrate (1).
    Type: Application
    Filed: October 8, 2018
    Publication date: July 30, 2020
    Applicant: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Dirk RUDLOFF, Martin FRIEDRICHS, Sebastian DOERING, Arnd HUERRICH
  • Publication number: 20200180193
    Abstract: A method produces a vehicle replacement part for a first vehicle component of a connecting system, which is fixed to a second vehicle component via a detachable clip connection. The first vehicle component has a male fixing element, and the second vehicle component has a female fixing element. To connect the first vehicle component to the second vehicle component, the male fixing element is plugged into the female fixing element and is latched. The production method of the vehicle replacement part provides an unfinished part, which is dimensioned to produce the vehicle replacement part. Then, the unfinished part is reshaped in accordance with the geometry of the first vehicle component. Male fixing elements are then provided and, in the last step, the male fixing elements are joined to the reshaped unfinished part.
    Type: Application
    Filed: December 10, 2019
    Publication date: June 11, 2020
    Inventors: Martin FRIEDRICH, Dominik RIETZEL, Bernhard SCHMID
  • Patent number: 10649019
    Abstract: A system and a method for determining local electric field strengths, the system including: a light source module configured to emit light; a plurality of electric field sensors, each sensor including a light input portion and a light output portion, each sensor including an electro-optic material arranged in a path of at least some of the received light, an optical property of the electro-optic material being variable depending on a local electric field strength at the sensor, and the electro-optic material being arranged in the sensor such that a property of the output light varies depending on the local electric field strength; a light detection module arranged to receive the output light from the sensors; and a processing module in communication with the light detection module, the processing module being programmed to determine a corresponding value for the electric field strength local to each of the sensors.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: May 12, 2020
    Assignee: X Development LLC
    Inventors: Martin Friedrich Schubert, Michael Jason Grundmann
  • Patent number: 10643982
    Abstract: A light emitting device that includes: a plurality of light emitting elements arranged at different locations in a common plane, each light emitting element including: at least one layer of a semiconductor material; a first electrical terminal located at a first location; a second electrical terminal located at a second location; and a third electrical terminal located at a third location; a first electrode layer including one or more electrodes; a second electrode layer including one or more electrodes; a third electrode layer including one or more electrodes; a first electrically insulating layer disposed between the plurality of light emitting elements and also disposed between the first and second electrode layers; and a second electrically insulating layer disposed between the plurality of light emitting elements and also disposed between the second and third electrode layers.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: May 5, 2020
    Assignee: X Development LLC
    Inventors: Martin Friedrich Schubert, Michael Jason Grundmann
  • Patent number: 10616562
    Abstract: A light field display for displaying a series of image frames to one or more viewers, the light field display includes: a plurality of light field pixels, each light field pixel including a plurality of light emitting elements, each light emitting element being configured to emit substantially collimated light, in which each light field pixel selectively emits light from each light emitting element into one or more of a plurality of different viewing directions during a single image frame during operation of the light field display; and an electronic controller in communication with the plurality of pixels, the electronic controller being programmed to cause each light field pixel to direct light into one or more of the plurality of different viewing directions such that a perspective of a displayed image varies according to the viewing direction.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: April 7, 2020
    Assignee: X Development LLC
    Inventors: Martin Friedrich Schubert, Michael Jason Grundmann, Raj B. Apte, Benoit Schillings
  • Patent number: 10573684
    Abstract: A process for producing a light emitting diode device, the process including: forming a plurality of quantum dots on a surface of a layer including a first area and a second area, the forming including: exposing the first area of the surface to light having a first wavelength while exposing the first area to a quantum dot forming environment that causes the quantum dots in the first area to form at a first growth rate while the quantum dots have a dimension less than a first threshold dimension; exposing the second area of the surface to light having a second wavelength while exposing the second area to the quantum dot forming environment that causes the quantum dots in the second area to form at a third growth rate while the quantum dots have a dimension less than a second threshold dimension; and processing the layer to form the LED device.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: February 25, 2020
    Assignee: X Development LLC
    Inventors: Martin Friedrich Schubert, Michael Jason Grundmann
  • Patent number: 10557880
    Abstract: An electro-optic (EO) sensor and a method for detecting a local electric field strength, the EO sensor including: a first optical cavity; a gain medium within the first optical cavity; a mode locking element within the first optical cavity; and an EO material within the first optical cavity, an effective optical path length of the EO material being variable depending on the local electric field strength at the EO sensor, wherein the gain medium, the mode locking element, and the EO material are arranged in a common path of light within the first optical cavity, and wherein during operation, the EO sensor emits pulses of light at a repetition rate characteristic of an effective optical path length of the light within the first optical cavity, the effective optical path length varying depending on the electric field strength local to the EO sensor.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: February 11, 2020
    Assignee: X Development LLC
    Inventors: Martin Friedrich Schubert, Michael Jason Grundmann
  • Patent number: 10559630
    Abstract: A light emitting device includes a substrate supporting a first light emitting element and a second light emitting element, the first light emitting element being configured to emit, in a first principal direction, light in a first wavelength band and the second light emitting element being configured to emit, in the first principal direction, light in a second wavelength band different from the first wavelength band, each light emitting element including: a light emitting diode layer, extending in a plane perpendicular to the first direction, having a thickness of 10 microns or less in the first direction and a maximum lateral dimension of 100 microns or less orthogonal to the first direction, the light emitting diode layer including a semiconductor material; and one or more layers configured to enhance an optical mode of the light emitted in the corresponding first or second wavelength band perpendicular to the plane and/or suppress an optical mode of the light emitted in the corresponding first or second w
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: February 11, 2020
    Assignee: X Development LLC
    Inventors: Martin Friedrich Schubert, Michael Jason Grundmann, Raj B. Apte, Benoit Schillings