Patents by Inventor Martin Heller

Martin Heller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250108816
    Abstract: A system for testing a driving assistance system includes a sensor arrangement configured to detect an actuation of an operating element by a user and to generate corresponding first detection data. The sensor arrangement is also configured to detect an acoustic signal indicating the actuation of the operating element and to generate corresponding second detection data. The system includes at least one evaluation module configured to determine, based on the first detection data, a first point in time corresponding to the actuation and to determine, based on the second detection data, a second point in time corresponding to an output of the acoustic signal.
    Type: Application
    Filed: January 26, 2023
    Publication date: April 3, 2025
    Inventor: Martin HELLER
  • Publication number: 20250012673
    Abstract: A test stand for protecting driver assistance systems of automated motor vehicles includes a rail system having at least two guide rails which intersect at an intersection point, each guide rail having a transport carriage for transporting a test vehicle, and a safety system having a priority circuit which is arranged at the intersection point. The safety system is designed to prevent the intersection point being passed through simultaneously by the two transport carriages.
    Type: Application
    Filed: January 17, 2023
    Publication date: January 9, 2025
    Inventors: Martin HELLER, Till KOST
  • Publication number: 20240425360
    Abstract: Provided is a MEMS resonator which is inexpensive in manufacturing cost and can secure long-term stability of vibration. A MEMS resonator includes: a substrate; a cavity provided in the substrate; a MEMS structure held within the cavity, the MEMS structure including: an anchor having a first end and a second end, the first end being connected to the substrate; a vibrator connected to the second end of the anchor and held in a hollow; and an electrode disposed around the vibrator, the vibrator and the electrode forming a capacitive vibrator; and a cap layer which is formed over the substrate and seals the MEMS structure therein, in which the anchor includes an isolation joint having an insulation property disposed to electrically insulate the first end from the second end.
    Type: Application
    Filed: June 25, 2024
    Publication date: December 26, 2024
    Applicant: ROHM CO., LTD.
    Inventors: Toma FUJITA, Martin HELLER, Daisuke KAMINISHI
  • Publication number: 20240410789
    Abstract: Systems, methods, and apparatuses are provided for safeguarding driver assistance functions of an automated motor vehicle. A test bench includes a support platform for a target, a magnetic track surface for the support platform, and a control device connected to the magnetic track surface. The control device is configured to output a magnetic track surface control signal to the magnetic track surface. Using the magnetic track surface control signal, the control device is also configured to adjust a position of the support platform relative to the magnetic track surface, and/or a distance between the support platform and the magnetic track surface by changing magnetic forces generated by the magnetic track surface.
    Type: Application
    Filed: September 20, 2022
    Publication date: December 12, 2024
    Inventor: Martin HELLER
  • Publication number: 20240101052
    Abstract: A testing device for testing at least one vehicle control unit includes an error feedforward device for feeding forward predefined electrical signals to the at least one vehicle control unit. The error feedforward device has, for electrical signal connection to the at least one vehicle control unit at least one power interface configured for conducting power signals, at least one control signal interface configured for conducting control signals, and at least one data bus interface configured for conducting bus signals. At least the bus lines belonging to the at least one data bus interface are guided separately in the testing device from the electrical lines belonging to the other types of interface.
    Type: Application
    Filed: February 11, 2022
    Publication date: March 28, 2024
    Inventor: Martin HELLER
  • Patent number: 11779919
    Abstract: A microfluidic system includes a microfluidic cartridge and a detector assembly. The microfluidic cartridge includes a first and second side and at least one flow channel and an inlet to flow channel(s) for feeding a liquid sample, the flow channel(s) includes a plurality of first optical detection sites. The detector assembly includes a slot. The detector assembly and the microfluidic cartridge are constructed such that when the microfluidic cartridge is inserted to a first predetermined position into the slot, one of the first optical detection sites of the microfluidic cartridge is positioned in the beam path of the first light source, and when the cartridge is inserted to a second predetermined position into the slot, another one of the first optical detection sites of the microfluidic cartridge is positioned in the beam path of the first light source.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: October 10, 2023
    Assignee: ZOETIS DENMARK APS
    Inventors: Niels Kristian Bau-Madsen, Lars Bue Nielsen, Martin Heller, Ole Kring, Olga Ordeig, Bent Overby
  • Publication number: 20230302200
    Abstract: Autologous prevascularized breast tissue constructs created via 3D printing and methods for 3D printing autologous prevascularized breast tissue constructs. The method comprises steps of: (i) providing a triculture consisting of adipose mesenchymal stem cells, fibroblasts, and endothelial progenitor cells, (ii) mixing the triculture cells with a bioink composed of biopolymers, (iii) printing three-dimensional structures of the breast tissue construct using the triculture-added bioink from step (ii), where the cells of the triculture are pretreated with growth media before printing so that the endothelial progenitor cells differentiate into endothelial cells and the adipose mesenchymal stem cells differentiate into adipocytes. After 3D printing, the development of vascular-like structures is induced.
    Type: Application
    Filed: August 10, 2021
    Publication date: September 28, 2023
    Inventors: Martin Heller, Walburgis Brenner
  • Patent number: 11724933
    Abstract: A MEMS device formed in a first semiconductor substrate is sealed using a second semiconductor substrate. To achieve this, an Aluminum Germanium structure is formed above the first substrate, and a polysilicon layer is formed above the second substrate. The first substrate is covered with the second substrate so as to cause the polysilicon layer to contact the Aluminum Germanium structure. Thereafter, eutectic bonding is performed between the first and second substrates so as to cause the Aluminum Germanium structure to melt and form an AlGeSi sealant thereby to seal the MEMS device. Optionally, the Germanium Aluminum structure includes, in part, a layer of Germanium overlaying a layer of Aluminum.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: August 15, 2023
    Assignee: ROHM Co., Ltd.
    Inventors: Martin Heller, Toma Fujita
  • Patent number: 11634317
    Abstract: A micro-electromechanical system (MEMS) device comprises a fixed portion and a proofmass suspended by at least one composite beam. The composite beam is cantilevered relative to the fixed portion and extends between a first end that is integrally formed with the fixed portion and a second distal end. The composite beam comprises an insulator having a top surface and at least two side surfaces; a conductor extending away from the fixed portion and surrounding at least a portion of the insulator; and a second conductor positioned adjacent to the top surface of the conductor and extending parallel with the insulator away from the fixed portion. The second conductor is separated from the first conductor to provide a low parasitic conductance of the composite beam.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: April 25, 2023
    Assignee: Kionix, Inc.
    Inventors: Andrew Hocking, Martin Heller, Wenting Gu
  • Publication number: 20230023763
    Abstract: A checking apparatus for checking a number of start-up cycles of a detection device of a motor vehicle includes an electrical switching device for providing an electrical sensor supply for the detection device and includes a contact device for electrically contacting the electrical switching device with the detection device. The electrical switching device has a comparator circuit and, by way of the comparator circuit, a continuous wake up test of the detection device is carried out and thus the number of start cycles is checked.
    Type: Application
    Filed: November 24, 2020
    Publication date: January 26, 2023
    Inventor: Martin HELLER
  • Patent number: 11527376
    Abstract: A micro-electromechanical system (MEMS) device includes a substrate and a beam suspended relative to a surface of the substrate. The substrate includes a buried insulator layer and a cavity. The beam includes a first portion and a second portion that are separated by an isolation joint. The cavity separates the surface of the substrate from the beam.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: December 13, 2022
    Assignee: Kionix, Inc.
    Inventors: Scott A. Miller, Nicole Kerness, Randy Phillips, Sangtae Park, Martin Heller, Mizuho Okada, Andrew Hocking, Wenting Gu
  • Patent number: 11474034
    Abstract: A lateral flow test system having an optical reader, a lateral flow cartridge and a computer system is provided. The lateral flow cartridge includes a porous test strip with a reading window into the porous test strip exposing an exposed zone of the porous strip. The optical reader has a reader housing and a slot for inserting the cartridge into the reader housing. The optical reader has an illumination arrangement adapted for illuminating the exposed zone of the porous strip when the cartridge is inserted into the slot. The optical reader further has a video camera configured for acquiring a series of digital images comprising the exposed zone of the porous strip. The computer system receives sets of pixel data representing the plurality of consecutive digital images and calculates wetting progress along the length of the exposed zone of the porous strip based on the sets of pixels data.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: October 18, 2022
    Assignee: Zoetis Services LLC
    Inventors: Carl Esben Poulsen, Johan Eriksen, Martin Heller, Niels Kristian Bau-Madsen
  • Patent number: 11248257
    Abstract: A nucleic acid probe, a method of immobilizing the nucleic acid probe to a solid support and the solid support including the immobilized probes using UV light. The nucleic acid probe includes a terminus anchor chain portion, and a capture portion wherein the terminus anchor chain portion includes a sequence of at least 18 nucleotides composed of stretches of up to 5 nucleotides of base type X with intermediate nucleotide(s) of base type Cytosine (C) and optionally one nucleotide of base type Guanine (G) or a sequence with at least 90% similarity thereto, wherein each base type X independently of each other designate base type Thymine (T) or base type Uracil (U).
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: February 15, 2022
    Assignee: ZOETIS SERVICES LLC
    Inventors: Johan Eriksen, Wai Hoe Chin, Martin Jensen Søe, Martin Heller
  • Publication number: 20210027965
    Abstract: A micro-electromechanical system (MEMS) device includes a substrate and a beam suspended relative to a surface of the substrate. The substrate includes a buried insulator layer and a cavity. The beam includes a first portion and a second portion that are separated by an isolation joint. The cavity separates the surface of the substrate from the beam.
    Type: Application
    Filed: July 25, 2019
    Publication date: January 28, 2021
    Inventors: Scott A. MILLER, Nicole KERNESS, Randy PHILLIPS, Sangtae PARK, Martin HELLER, Mizuho OKADA, Andrew HOCKING, Wenting GU
  • Patent number: 10843676
    Abstract: A compressed-air brake assembly for a rail vehicle includes at least one brake cylinder for producing a pressing force for a friction brake, wherein at least one control valve forms a corresponding brake-cylinder pressure in accordance with a pressure in a main air line conducted to the at least one brake cylinder via a line arranged therebetween. The at least one control valve interacts with at least one compressed-air sensor. A reserve-air tank can be controlled by the at least one control valve and stores the reserve air for the at least one brake cylinder. At least one compressed-air sensor arranged on the at least one control valve is connected to an energy source and a data memory having an interface for reading out data, wherein the data in the data memory contain information about a pressure level in the at least one brake cylinder.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: November 24, 2020
    Assignee: KNORR-BREMSE SYSTEME FÜR SCHIENENFAHRZEUGE GMBH
    Inventors: Martin Heller, Thomas Anton, Jorg-Johannes Wach, Michael Holz, Matthias Cordes
  • Patent number: 10793427
    Abstract: A MEMS device formed in a first semiconductor substrate is sealed using a second semiconductor substrate. To achieve this, an Aluminum Germanium structure is formed above the first substrate, and a polysilicon layer is formed above the second substrate. The first substrate is covered with the second substrate so as to cause the polysilicon layer to contact the Aluminum Germanium structure. Thereafter, eutectic bonding is performed between the first and second substrates so as to cause the Aluminum Germanium structure to melt and form an AlGeSi sealant thereby to seal the MEMS device. Optionally, the Germanium Aluminum structure includes, in part, a layer of Germanium overlaying a layer of Aluminum.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: October 6, 2020
    Assignee: KIONIX, INC.
    Inventors: Martin Heller, Toma Fujita
  • Patent number: 10766767
    Abstract: A MEMS device formed in a first semiconductor substrate is sealed using a second semiconductor substrate. To achieve this, an Aluminum Germanium structure is formed above the first substrate, and a polysilicon layer is formed above the second substrate. The first substrate is covered with the second substrate so as to cause the polysilicon layer to contact the Aluminum Germanium structure. Thereafter, eutectic bonding is performed between the first and second substrates so as to cause the Aluminum Germanium structure to melt and form an AlGeSi sealant thereby to seal the MEMS device. Optionally, the Germanium Aluminum structure includes, in part, a layer of Germanium overlaying a layer of Aluminum.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: September 8, 2020
    Assignee: KIONIX, INC.
    Inventors: Martin Heller, Toma Fujita
  • Publication number: 20200048078
    Abstract: A MEMS device formed in a first semiconductor substrate is sealed using a second semiconductor substrate. To achieve this, an Aluminum Germanium structure is formed above the first substrate, and a polysilicon layer is formed above the second substrate. The first substrate is covered with the second substrate so as to cause the polysilicon layer to contact the Aluminum Germanium structure. Thereafter, eutectic bonding is performed between the first and second substrates so as to cause the Aluminum Germanium structure to melt and form an AlGeSi sealant thereby to seal the MEMS device. Optionally, the Germanium Aluminum structure includes, in part, a layer of Germanium overlaying a layer of Aluminum.
    Type: Application
    Filed: October 16, 2019
    Publication date: February 13, 2020
    Inventors: Martin Heller, Toma Fujita
  • Patent number: 10521742
    Abstract: The invention comprises a system for collecting batches of food from food suppliers. The system comprises at least one movable collecting unit with an associated data receiver; a food parameter determining system for determining at least one batch parameter of a collected food batch; a database system for storing food supplier data comprising at least one food collecting address identification for each food supplier, food receiver data comprising at least one food delivering address identification for each of at least one food receiver station and reference data comprising threshold data for said at least one batch parameter or derived parameter correlated to said batch parameter. The system further comprises a server system coupled to said database system and being in data communication with said data receiver. The server system receives at least data from the database system and batch parameter data and calculates logistic plan(s) for the movable collecting unit(s).
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: December 31, 2019
    Assignee: SCANDINAVIAN MICRO BIODEVICES APS
    Inventors: Ole Kring, Bent Overby, Martin Heller, Niels Kristian Bau-Madsen, Lars Mogensen
  • Publication number: 20190322522
    Abstract: A micro-electromechanical system (MEMS) device comprises a fixed portion and a proofmass suspended by at least one composite beam. The composite beam is cantilevered relative to the fixed portion and extends between a first end that is integrally formed with the fixed portion and a second distal end. The composite beam comprises an insulator having a top surface and at least two side surfaces; a conductor extending away from the fixed portion and surrounding at least a portion of the insulator; and a second conductor positioned adjacent to the top surface of the conductor and extending parallel with the insulator away from the fixed portion. The second conductor is separated from the first conductor to provide a low parasitic conductance of the composite beam.
    Type: Application
    Filed: April 23, 2019
    Publication date: October 24, 2019
    Inventors: Andrew Hocking, Martin Heller, Wenting Gu