Patents by Inventor Martin Heller

Martin Heller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190026662
    Abstract: The invention comprises a system for collecting batches of food from food suppliers. The system comprises at least one movable collecting unit with an associated data receiver; a food parameter determining system for determining at least one batch parameter of a collected food batch; a database system for storing food supplier data comprising at least one food collecting address identification for each food supplier, food receiver data comprising at least one food delivering address identification for each of at least one food receiver station and reference data comprising threshold data for said at least one batch parameter or derived parameter correlated to said batch parameter. The system further comprises a server system coupled to said database system and being in data communication with said data receiver. The server system receives at least data from the database system and batch parameter data and calculates logistic plan(s) for the movable collecting unit(s).
    Type: Application
    Filed: January 17, 2017
    Publication date: January 24, 2019
    Applicants: SCANDINAVIAN MICRO BIODEVICES APS, CHR. HANSEN A/S
    Inventors: Ole Kring, Bent Overby, Martin Heller, Niels Kristian Bau-Madsen, Lars Mogensen
  • Patent number: 10167191
    Abstract: A method of fabricating a semiconductor device, includes, in part, growing a first layer of oxide on a surface of a first semiconductor substrate, forming a layer of insulating material on the oxide layer, patterning and etching the insulating material and the first oxide layer to form a multitude of oxide-insulator structures and further to expose the surface of the semiconductor substrate, growing a second layer of oxide in the exposed surface of the semiconductor substrate, and removing the second layer of oxide thereby to form a cavity in which a MEMS device is formed. The process of growing oxide in the exposed surface of the cavity and removing this oxide may be repeated until the cavity depth reaches a predefined value. Optionally, a multitude of bump stops is formed in the cavity.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: January 1, 2019
    Assignee: KIONIX, INC.
    Inventors: Martin Heller, Jonah deWall, Andrew Hocking, Kristin Lynch, Sangtae Park
  • Publication number: 20180282154
    Abstract: A method of fabricating a semiconductor device, includes, in part, growing a first layer of oxide on a surface of a first semiconductor substrate, forming a layer of insulating material on the oxide layer, patterning and etching the insulating material and the first oxide layer to form a multitude of oxide-insulator structures and further to expose the surface of the semiconductor substrate, growing a second layer of oxide in the exposed surface of the semiconductor substrate, and removing the second layer of oxide thereby to form a cavity in which a MEMS device is formed. The process of growing oxide in the exposed surface of the cavity and removing this oxide may be repeated until the cavity depth reaches a predefined value. Optionally, a multitude of bump stops is formed in the cavity.
    Type: Application
    Filed: August 24, 2017
    Publication date: October 4, 2018
    Inventors: Martin Heller, Jonah deWall, Andrew Hocking, Kristin Lynch, Sangtae Park
  • Publication number: 20180282153
    Abstract: A MEMS device formed in a first semiconductor substrate is sealed using a second semiconductor substrate. To achieve this, an Aluminum Germanium structure is formed above the first substrate, and a polysilicon layer is formed above the second substrate. The first substrate is covered with the second substrate so as to cause the polysilicon layer to contact the Aluminum Germanium structure. Thereafter, eutectic bonding is performed between the first and second substrates so as to cause the Aluminum Germanium structure to melt and form an AlGeSi sealant thereby to seal the MEMS device. Optionally, the Germanium Aluminum structure includes, in part, a layer of Germanium overlaying a layer of Aluminum.
    Type: Application
    Filed: August 15, 2017
    Publication date: October 4, 2018
    Inventors: Martin Heller, Toma Fujita
  • Publication number: 20180259449
    Abstract: A lateral flow test system having an optical reader, a lateral flow cartridge and a computer system is provided. The lateral flow cartridge includes a porous test strip with a reading window into the porous test strip exposing an exposed zone of the porous strip. The optical reader has a reader housing and a slot for inserting the cartridge into the reader housing. The optical reader has an illumination arrangement adapted for illuminating the exposed zone of the porous strip when the cartridge is inserted into the slot. The optical reader further has a video camera configured for acquiring a series of digital images comprising the exposed zone of the porous strip. The computer system receives sets of pixel data representing the plurality of consecutive digital images and calculates wetting progress along the length of the exposed zone of the porous strip based on the sets of pixels data.
    Type: Application
    Filed: March 9, 2018
    Publication date: September 13, 2018
    Inventors: Carl Esben Poulsen, Johan Eriksen, Martin Heller, Niels Kristian Bau-Madsen
  • Patent number: 10053360
    Abstract: A method of processing a semiconductor substrate having a first conductivity type includes, in part, forming a first implant region of a second conductivity type in the semiconductor substrate where the first implant region is characterized by a first depth, forming a second implant region of the first conductivity type in the semiconductor substrate where the second implant region is characterized by a second depth smaller than the first depth, forming a porous layer within the semiconductor substrate where the porous layer is adjacent the first implant region, and growing an epitaxial layer on the semiconductor substrate thereby causing the porous layer to collapse and form a cavity.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: August 21, 2018
    Assignee: Kionix, Inc.
    Inventor: Martin Heller
  • Publication number: 20170240157
    Abstract: A compressed-air brake assembly for a rail vehicle includes at least one brake cylinder for producing a pressing force for a friction brake, wherein at least one control valve forms a corresponding brake-cylinder pressure in accordance with a pressure in a main air line conducted to the at least one brake cylinder via a line arranged therebetween. The at least one control valve interacts with at least one compressed-air sensor. A reserve-air tank can be controlled by the at least one control valve and stores the reserve air for the at least one brake cylinder. At least one compressed-air sensor arranged on the at least one control valve is connected to an energy source and a data memory having an interface for reading out data, wherein the data in the data memory contain information about a pressure level in the at least one brake cylinder.
    Type: Application
    Filed: March 9, 2015
    Publication date: August 24, 2017
    Applicant: KNORR-BREMSE SYSTEME FÜR SCHIENENFAHRZEUGE GMBH
    Inventors: Martin HELLER, Thomas ANTON, Jorg-Johannes WACH, Michael HOLZ, Matthias CORDES
  • Patent number: 9719784
    Abstract: A micro-gyroscope for determining a rate of rotation about a Z-axis includes a substrate and two sensor devices each of which comprises at least one drive mass, at least one anchor, drive elements, at least one sensor mass and sensor elements. The drive mass is mounted linearly displaceably in the direction of an X-axis, and can be driven in an oscillatory manner with respect to the X-axis. The sensor mass is coupled to the drive mass by means of springs. The sensor mass is displaceable in the Y-direction, and sensor elements detects a deflection of the sensor mass in the Y-axis. The two sensor devices are disposed parallel to each other and one above the other in the direction of the Z-axis, and the drive mass in these two sensor devices are coupled to each other by means of a coupling spring.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: August 1, 2017
    Assignee: Hanking Electronics, Ltd.
    Inventor: Martin Heller
  • Publication number: 20170203295
    Abstract: A microfluidic cartridge includes first and second sides and at least one flow channel and an inlet to the flow channel(s) for feeding a liquid sample, the flow channel(s) include a plurality of first optical detection sites. A detector assembly includes a slot for inserting the microfluidic cartridge and a first fixed light source with a beam path and an optical reader for reading out optical signals from at least one of the first optical detection site(s). When the microfluidic cartridge is inserted to a first predetermined position into the slot, one of the first optical detection sites of the microfluidic cartridge is positioned in the beam path of the first light source, and when the cartridge is inserted to a second predetermined position into the slot, another one of the first optical detection sites of the microfluidic cartridge is positioned in the beam path of the first light source.
    Type: Application
    Filed: June 15, 2015
    Publication date: July 20, 2017
    Applicant: SCANDINAVIAN MICRO BIODEVICES APS
    Inventors: Niels Kristian BAU-MADSEN, Lars Bue NIELSEN, Martin HELLER, Ole KRING, Olga ORDEIG, Bent OVERBY
  • Publication number: 20160040990
    Abstract: A micro-gyroscope for determining a rate of rotation about a Z-axis includes a substrate and two sensor devices each of which comprises at least one drive mass, at least one anchor, drive elements, at least one sensor mass and sensor elements. The drive mass is mounted linearly displaceably in the direction of an X-axis, and can be driven in an oscillatory manner with respect to the X-axis. The sensor mass is coupled to the drive mass by means of springs. The sensor mass is displaceable in the Y-direction, and sensor elements detects a deflection of the sensor mass in the Y-axis. The two sensor devices are disposed parallel to each other and one above the other in the direction of the Z-axis, and the drive mass in these two sensor devices are coupled to each other by means of a coupling spring.
    Type: Application
    Filed: August 17, 2015
    Publication date: February 11, 2016
    Applicant: MAXIM INTEGRATED PRODUCTS, INC.
    Inventor: Martin Heller
  • Patent number: 9109893
    Abstract: A micro-gyroscope for determining a rate of rotation about a Z-axis includes a substrate and two sensor devices each of which comprises at least one drive mass, at least one anchor, drive elements, at least one sensor mass and sensor elements. The drive mass is mounted linearly displaceably in the direction of an X-axis, and can be driven in an oscillatory manner with respect to the X-axis. The sensor mass is coupled to the drive mass by means of springs. The sensor mass is displaceable in the Y-direction, and sensor elements detects a deflection of the sensor mass in the Y-axis. The two sensor devices are disposed parallel to each other and one above the other in the direction of the Z-axis, and the drive mass in these two sensor devices are coupled to each other by means of a coupling spring.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: August 18, 2015
    Assignee: Maxim Integrated Products, Inc.
    Inventor: Martin Heller
  • Patent number: 8590376
    Abstract: The present invention relates to an inertial sensor, preferably an acceleration sensor or multi-axis acceleration sensor as a microelectromechanical construction element, said sensor comprising a housing with at least one first gas-filled cavity in which a first detection unit is disposed moveably relative to the housing for detection of an acceleration to be detected, wherein the inertial sensor comprises a damping structure.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: November 26, 2013
    Assignees: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung e.V., Maxim Integrated GmbH
    Inventors: Wolfgang Reinert, Martin Heller
  • Patent number: 8038226
    Abstract: The invention relates to an electropneumatic braking system of a rail vehicle, containing a direct-action electropneumatic braking device and an indirect-action compressed-air braking device.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: October 18, 2011
    Assignee: Knorr-Bremse Systeme Fur Schienenfahrzeuge GmbH
    Inventors: Thomas Knörnschild, Timm Simon, Martin Heller, Marc-Oliver Herden
  • Patent number: 8017019
    Abstract: Improved fluidized bed precipitators (20, 46, 62, 74, 108, 112, 134, 168) especially useful for the treatment of waste waters containing soluble phosphorus are provided, having upright, primary fluidized bed sections (22, 48, 64, 76, 110, 114, 136) and obliquely oriented solids settling sections (28, 54, 68, 120, 144) which enhance the settling of small particles (166) and return thereof to the fluidized bed sections (22, 48, 64, 76, 110, 114, 136). The precipitators (20, 46, 62, 74, 108, 112, 134, 168) may also be equipped with a solids detection/withdrawal assembly (178) made up of one or more pressure transducers (180, 182) operable to determine the pressures within the fluidized bed sections 22, 48, 64, 76, 110, 114, 136) as a measure of bed densities, along with a selectively operable valve (172) which may be opened to periodically remove solids without clogging.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: September 13, 2011
    Assignees: Kansas State University Research Foundation, Kansas Environmental Management Associates, LLC
    Inventors: Gina Young Becker, Sigifredo Castro Diaz, Michael Hanson, Kylo Martin Heller, Dean Thompson
  • Publication number: 20080314838
    Abstract: Improved fluidized bed precipitators (20, 46, 62, 74, 108, 112, 134, 168) especially useful for the treatment of waste waters containing soluble phosphorus are provided, having upright, primary fluidized bed sections (22, 48, 64, 76, 110, 114, 136) and obliquely oriented solids settling sections (28, 54, 68, 120, 144) which enhance the settling of small particles (166) and return thereof to the fluidized bed sections (22, 48, 64, 76, 110, 114, 136). The precipitators (20, 46, 62, 74, 108, 112, 134, 168) may also be equipped with a solids detection/withdrawal assembly (178) made up of one or more pressure transducers (180, 182) operable to determine the pressures within the fluidized bed sections 22, 48, 64, 76, 110, 114, 136) as a measure of bed densities, along with a selectively operable valve (172) which may be opened to periodically remove solids without clogging.
    Type: Application
    Filed: June 13, 2008
    Publication date: December 25, 2008
    Inventors: Gina Young Becker, Sigifredo Castro Diaz, Michael Hanson, Kylo Martin Heller
  • Publication number: 20070290550
    Abstract: The invention relates to an electropneumatic braking system of a rail vehicle, containing a direct-action electropneumatic braking device and an indirect-action compressed air braking device.
    Type: Application
    Filed: May 13, 2005
    Publication date: December 20, 2007
    Applicant: Knorr-Bremse System fur Schienenfahrzeuge Gmbh
    Inventors: Thomas Knornschild, Timm Simon, Martin Heller, Marc-Oliver Herden
  • Patent number: 7303873
    Abstract: T-DNA tagging with a promoterless ?-glucuronidase (GUS) gene generated transgenic Nicotiana tabacum plants that expressed GUS activity either only in developing seed coats, or constitutively. Cloning and deletion analysis of the GUS fusion revealed that the promoter responsible for seed coat specificity was located in the plant DNA proximal to the GUS gene. Analysis of the region demonstrated that the seed coat-specificity of GUS expression in this transgenic plant resulted from T-DNA insertion next to a cryptic promoter. This promoter is useful in controlling the expression of genes to the developing seed coat in plant seeds. Similarly, cloning and characterization of the cryptic constitutive promoter revealed the occurrence of several cryptic regulatory regions. These regions include promoter, negative regulatory elements, transcriptional enhancers, core promoter regions, and translational enhancers and other regulatory elements.
    Type: Grant
    Filed: May 13, 2003
    Date of Patent: December 4, 2007
    Assignee: Her Majesty the Queen in Right of Canada as Represented by the Minister of Agriculture and Agri-Food
    Inventors: Brian Miki, Thérèse Ouellet, Jiro Hattori, Elizabeth Foster, Hélène Labbé, Teresa Martin-Heller, Lining Tian, Daniel Charles William Brown, Peijun Zhang, Keqiang Wu
  • Patent number: 6939958
    Abstract: This invention is directed to a regulatory region obtained from a wheat aleurone gene LtpW1. This regulatory region, truncated derivatives, mutations, or deletions of this regulatory region, can be used to express heterologous genes of interest within aleurone cells of a plant. Furthermore, this invention is directed to a truncated LtpW1 regulatory region that exhibits constitutive activity with both monocot and dicot plants. This invention is also directed to vectors comprising these regulatory regions operatively linked with a heterologous gene of interest, as well as plant cell cultures and transgenic plants comprising these vectors. A method for the preparation of a plant using the regulatory regions of this invention are also disclosed.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: September 6, 2005
    Assignee: Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and Agri-Food
    Inventors: John Simmonds, Leslie Cass, Linda Harris, Sharon Allard, Kamal Malik, Teresa Martin-Heller, Dan Brown, Ming Hu, Brian Miki, Keqiang Wu
  • Patent number: 6910744
    Abstract: The invention relates to a control device for compressed-air brakes having a control valve, comprising a housing, a piston rod, a piston, a second piston, a double-seat valve, having a control element, having a supply air reservoir, having a control chamber, having a main air pipe; one side of the piston being connected in a compressed-air carrying manner with the main air pipe; the other side of the piston being connected in a compressed-air carrying manner with the control chamber; one side of the second piston having a compressed-air connection to a brake cylinder or a brake cylinder pilot chamber; the double-seat valve being connected between a compressed-air connection of the supply air reservoir and the compressed-air connection to the brake cylinder or to the brake cylinder pilot chamber.
    Type: Grant
    Filed: August 9, 2002
    Date of Patent: June 28, 2005
    Assignee: Knorr-Bremse Systeme für Schienenfahrzeuge GmbH
    Inventors: Martin Heller, Benno Wenk, Stefan Sonntag
  • Patent number: D556039
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: November 27, 2007
    Assignee: The Procter & Gamble Company
    Inventors: David Martin Heller, Brian Lee Floyd, Philip Edwin Hague, Eric Fitzgerald Riddick, Miguel Alberto Herrera