Patents by Inventor Martin Pierre

Martin Pierre has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240114071
    Abstract: A media server machine may be configured to provide media content within a datastream. This datastream may be provided to a media device that is configured to present the media content on a display. Also, this datastream may contemporaneously contain an “app-sync indicator” for the media content. The app-sync indicator is a data structure that signals the media device to launch an application on a companion device. By providing the app-sync indicator contemporaneously with the media content in the datastream, the launching of the application on the companion device may be synchronized with the media content. The app-sync indicator may specify the application to be launched. Also, the app-sync indicator may specify supplemental content to be presented by the launched application on the companion device.
    Type: Application
    Filed: October 11, 2023
    Publication date: April 4, 2024
    Inventors: Debra Hensgen, Ludovic Pierre, Martin Gibson, Nandini Iyer, Jean-Rene Menand, Sebastian Rapport
  • Publication number: 20240071611
    Abstract: Systems, devices, and methods are provided that enable the revision of RF command handling software stored in ROM, and that enable to supplementation of RF command handling software stored in ROM. Examples of the systems, devices, and methods make use of a lookup data structure stored within writable non-volatile memory.
    Type: Application
    Filed: August 2, 2023
    Publication date: February 29, 2024
    Inventors: Xuandong Hua, Jean-Pierre Cole, Martin Fennell, Theodore J. Kunich, Lane Westlund, Arni Ingimundarson
  • Publication number: 20230385484
    Abstract: A computer-implemented method for designing a sheet part comprising beads. The method comprises providing a CAD model representing the part. The CAD model includes a feature tree. The feature tree has one or more CAD parameters each having an initial value. The method further comprises providing a bead optimization program specified by one or more use and/or manufacturing performance indicators. The one or more indicators comprise one or more objective function(s) and/or one or more constraints. The method further comprises modifying the initial values of the one or more CAD parameters by solving the optimization program using a gradient-based bead optimization method. The optimization method has as free variables the one or more CAD parameters. The optimization method uses sensitivities. Each sensitivity is an approximation of a respective derivative of a respective performance indicator with respect to a respective CAD parameter.
    Type: Application
    Filed: May 26, 2023
    Publication date: November 30, 2023
    Applicant: DASSAULT SYSTEMES
    Inventors: Peter CLAUSEN, Martin-Pierre SCHMIDT, Claus Bech Wittendorf PEDERSEN, Pascal HEBRARD
  • Publication number: 20230315945
    Abstract: A computer-implemented method for designing a manufacturing product. The method includes obtaining a CAD model representing the manufacturing product. The CAD model includes a feature tree. The feature tree has one or more CAD parameters each having an initial value. The method also includes obtaining an optimization program. The optimization program is specified by one or more use and/or manufacturing performance indicators. The one or more indicators having one or more objective functions and/or one or more constraints. The method further includes modifying the initial values of the one or more CAD parameters by solving the optimization program using a gradient-based optimization method. The optimization method has as free variable the one or more CAD parameters and uses sensitivities. Each sensitivity is an approximation of a respective derivative of a respective performance indicator with respect to a respective CAD parameter.
    Type: Application
    Filed: March 22, 2023
    Publication date: October 5, 2023
    Applicant: DASSAULT SYSTEMES
    Inventors: Martin-Pierre SCHMIDT, Peter CLAUSEN, Claus Bech Wittendorf PEDERSEN, Pascal HEBRARD
  • Patent number: 11669660
    Abstract: The disclosure notably relates to a computer-implemented method for designing a modeled object. The method includes obtaining a finite element mesh, data associated to the finite element mesh and a non-uniform distribution of one or more local quantity constraints. The data associated to the finite element mesh include forces, boundary conditions, parameters, and a global quantity constraint. The method also comprises performing a topology optimization based on the finite element mesh, the data associated to the finite element mesh, and the non-uniform distribution. The method improves the design of a modeled object representing a mechanical part by topology optimization.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: June 6, 2023
    Assignee: DASSAULT SYSTEMES
    Inventors: Martin-Pierre Hugo Schmidt, Auxkin Ortuzar Del Castillo, Claus Bech Wittendorf Pedersen
  • Publication number: 20230133725
    Abstract: A computer-implemented method for designing a 3D modeled object representing a transmission mechanism with a target 3D motion behavior. The method including obtaining a 3D finite element mesh and data associated to the mesh, performing a topology optimization based on the mesh and on the associated data, therefore obtaining a density field representing distribution of material quantity of the 3D modeled object. The method further includes computing a signed field based on the density field and the associated data, identifying one or more patterns of convergence and divergence in the signed field, each pattern forming a region of the signed field, and for each identified pattern, identifying a joint representative of the identified pattern and replacing a part of the density field corresponding to the respective region formed by the identified pattern by a material distribution representing the identified joint.
    Type: Application
    Filed: October 25, 2022
    Publication date: May 4, 2023
    Applicant: DASSAULT SYSTEMES
    Inventors: Martin-Pierre SCHMIDT, Claus Bech Wittendorf PEDERSEN, David Leo BONNER
  • Publication number: 20230114354
    Abstract: A computer-implemented method for designing a modeled object representing a mechanical part formed in a material having an anisotropic behavior with respect to a physical property including obtaining a first mesh, a density field representing at least boundary of the modeled object, and an orientation tensor field representing a desired anisotropic behavior. The method further includes, for each ith principal direction of the orientation tensor field, computing an anisotropic reaction-diffusion pattern on an ith mesh, the ith mesh having higher resolution than the first mesh and being bounded by the boundary of the modeled object. The method further includes combining by Boolean operations the computed anisotropic reaction-diffusion patterns projected on a second mesh.
    Type: Application
    Filed: October 7, 2022
    Publication date: April 13, 2023
    Applicant: DASSAULT SYSTEMES
    Inventors: David-Henri GARNIER, Martin-Pierre SCHMIDT, Damien ROHMER
  • Patent number: 11543055
    Abstract: A pipe tensioner for laying or recovering a subsea pipeline comprising at least two opposing continuous tracks able to hold the subsea pipeline, each track having a plurality of pads mounted on the continuous track for contacting the subsea pipeline, characterised in that at least one pad is a load pad comprising one or more load sensors for measuring loading on the load pad during handling of the subsea pipeline.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: January 3, 2023
    Inventors: Andrew Harrop, Ludovic Lacan, Martin Pierre, Paul McMillan
  • Publication number: 20220405442
    Abstract: A discrete geometrical pattern library guides a method for design optimization of a finite element model in a computer aided design (CAD) environment. Boundary conditions are applied to the finite element model, design variables for the bounded finite element model are initialized, and an objective function for the finite element model is evaluated. A gradient of the objective function is evaluated with respect to the design variables, an appearance constraint function is evaluated for the finite element model, and a gradient of the appearance constraint function is evaluated with respect to the design variables. The design variables are updated using a mathematical programming, and a convergence in the design optimization is detected, producing a converged design optimization of the finite element model is produced.
    Type: Application
    Filed: May 19, 2022
    Publication date: December 22, 2022
    Inventors: Martin-Pierre Hugo Schmidt, Claus Bech Wittendorf Pedersen, Tanguy Theo Navez
  • Publication number: 20220290500
    Abstract: Provided herein is a resonance-enabled drill, comprising a housing; one or more force generators chosen from one or more voice coil actuators, one or more eccentrics driven by one or more electric motors, or combinations thereof; one or more sonic heads coupled to the one or more force generators; a plurality of springs coupling the housing to the one or more sonic heads; and a drill rod disposed on its proximal end to the one or more sonic heads. Also provided is a gauge for a sonic drill configured to display information to an operator, for example indicating to the operator when the drill is on or near resonance. Further provided are methods for selecting a resonance frequency in a sonic drill.
    Type: Application
    Filed: March 9, 2022
    Publication date: September 15, 2022
    Applicant: Sonic Drilling Institute, LLC
    Inventors: Peter Andrew Lucon, Martin Pierre Valdo Hammann
  • Publication number: 20220243841
    Abstract: A line laying and/or recovering method in a body of water that includes providing a laying device including two facing upstream grippers and two facing downstream grippers, defining a passage for the circulation of the line; lowering the line to at least one stop position; stopping the line in the at least one stop position; and, prior to the at least one stopping of the line in the stop position, limited downward overrun past the stop position to a change of direction position; time delay in the change of direction position; limited raising of the line from the change of direction position to the stop position.
    Type: Application
    Filed: June 24, 2020
    Publication date: August 4, 2022
    Inventors: Sebastien JEAN, Martin PIERRE
  • Publication number: 20210182456
    Abstract: A computer-implemented method for designing a 3D modeled object. The 3D modeled object represents a mechanical part formed in a material having an anisotropic behavior with respect to a physical property. The method includes obtaining a 3D finite element mesh and data associated to the 3D finite element mesh. The data associated to the 3D finite element mesh includes a plurality of forces and boundary conditions. The plurality of forces forms multiple load cases. The method further comprises optimizing an orientation field distributed on the 3D finite element mesh with respect to an objective function. The objective function rewards orientation continuity with respect to the physical property. The optimizing is based on the 3D finite element mesh and on the data associated to the 3D finite element mesh. This constitutes an improved method for designing a 3D modeled object.
    Type: Application
    Filed: December 16, 2020
    Publication date: June 17, 2021
    Applicant: DASSAULT SYSTEMES
    Inventors: Laura Marion COURET, Martin-Pierre SCHMIDT, Claus Bech Wittendorf PEDERSEN
  • Patent number: 11027493
    Abstract: Described is a computer-implemented method of additive manufacturing of a three-dimensional part. The method includes obtaining a surface representation of a 3D part in a 3D scene, the surface representation being enclosed inside a bounding volume, discretizing the scene into voxels, forming an unsigned distance field by storing a minimal distance value to the surface representation of the part for each voxel, determining one or more voxels located outside the bounding volume, the one or more voxels located outside the bounding volume being associated with a label, propagating by flood filling the label until a stopping condition is met, which is reaching a gradient inversion of the distance field, inverting the sign of the distance value of all unlabeled voxels so as to obtain a signed distance field, computing an iso-surface of the part at iso-value zero based on the signed distance field, and additive manufacturing the part.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: June 8, 2021
    Assignee: DASSAULT SYSTEMES
    Inventor: Martin-Pierre Schmidt
  • Publication number: 20210116051
    Abstract: A pipe tensioner for laying or recovering a subsea pipeline comprising at least two opposing continuous tracks able to hold the subsea pipeline, each track having a plurality of pads mounted on the continuous track for contacting the subsea pipeline, characterised in that at least one pad is a load pad comprising one or more load sensors for measuring loading on the load pad during handling of the subsea pipeline.
    Type: Application
    Filed: October 4, 2017
    Publication date: April 22, 2021
    Inventors: Andrew HARROP, Ludovic LACAN, Martin PIERRE, Paul MCMILLAN
  • Patent number: 10915680
    Abstract: Embodiments automatically determine optimized designs for manufacturing real-world objects. An embodiment begins with defining a finite element model comprised of a plurality of elements that represents a real-world object. Next, equilibriums and design responses of the object in response boundary conditions are determined, which includes calculating a local volume constraint for a given element of the finite element model. Then, design response sensitivities of the object in response to the boundary conditions are determined, which includes differentiating the calculated local volume constraint to determine sensitivity of a sizing design variable.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: February 9, 2021
    Assignee: Dassault Systemes Simulia Corp.
    Inventors: Claus Bech Wittendorf Pedersen, Nikolai Gerzen, Martin-Pierre Hugo Schmidt
  • Patent number: 10796039
    Abstract: The disclosure notably relates to a computer-implemented method for designing a three-dimensional (3D) finite element mesh of a 3D part that includes a lattice structure. The method includes superposing a regular tiling of cells with a solid representation of the 3D part, partitioning the cells into two groups, a first group of cells, each in contact with the solid representation, and a second group of cells, none in contact with the solid representation. The method also includes computing a Boolean union of the first group of cells and the solid representation, the Boolean union forming a volume, finite element meshing the volume of the computed Boolean union while preserving the set of faces of the first group of cells that are shared with the second group of cells, and merging the finite element meshes of the cells of the second group and the meshed volume of the computed Boolean union.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: October 6, 2020
    Assignee: Dassault Systemes
    Inventors: Martin-Pierre Schmidt, Jean-Marc Lachaume, David Leo Bonner
  • Patent number: 10748336
    Abstract: The disclosure notably relates to a computer-implemented method for designing a three-dimensional (3D) finite element mesh of a 3D part that comprises a lattice structure. The method includes superposing a regular tiling of cells with the solid representation of a 3D part, partitioning the cells into two groups, a first group of cells, each in contact with the solid representation of the 3D part, and a second group of cells, none in contact with the solid representation. The method also includes finite element meshing a boundary of the solid representation, extracting a boundary finite element mesh of the first group of cells, computing a Boolean union of the finite element mesh and the extracted boundary finite element mesh, finite element meshing a volume of the computed Boolean union and merging the finite element meshes of meshed volume of computed Boolean union and the cells of the second group of cells.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: August 18, 2020
    Assignee: Dassault Systemes
    Inventors: Martin-Pierre Schmidt, Jean-Marc Lachaume, David Leo Bonner
  • Publication number: 20200201951
    Abstract: Embodiments automatically determine optimized designs for manufacturing real-world objects. An embodiment begins with defining a finite element model comprised of a plurality of elements that represents a real-world object. Next, equilibriums and design responses of the object in response boundary conditions are determined, which includes calculating a local volume constraint for a given element of the finite element model. Then, design response sensitivities of the object in response to the boundary conditions are determined, which includes differentiating the calculated local volume constraint to determine sensitivity of a sizing design variable.
    Type: Application
    Filed: December 21, 2018
    Publication date: June 25, 2020
    Inventors: Claus Bech Wittendorf Pedersen, Nikolai Gerzen, Martin-Pierre Hugo Schmidt
  • Publication number: 20200143009
    Abstract: The disclosure notably relates to a computer-implemented method for designing a modeled object. The method includes obtaining a finite element mesh, data associated to the finite element mesh and a non-uniform distribution of one or more local quantity constraints. The data associated to the finite element mesh include forces, boundary conditions, parameters, and a global quantity constraint. The method also comprises performing a topology optimization based on the finite element mesh, the data associated to the finite element mesh, and the non-uniform distribution. The method improves the design of a modeled object representing a mechanical part by topology optimization.
    Type: Application
    Filed: November 4, 2019
    Publication date: May 7, 2020
    Applicant: DASSAULT SYSTEMES
    Inventors: Martin-Pierre Hugo SCHMIDT, Auxkin ORTUZAR DEL CASTILLO, Claus Bech Wittendorf PEDERSEN
  • Publication number: 20190197205
    Abstract: The disclosure notably relates to a computer-implemented method for designing a three-dimensional (3D) finite element mesh of a 3D part that includes a lattice structure. The method includes superposing a regular tiling of cells with a solid representation of the 3D part, partitioning the cells into two groups, a first group of cells, each in contact with the solid representation, and a second group of cells, none in contact with the solid representation. The method also includes computing a Boolean union of the first group of cells and the solid representation, the Boolean union forming a volume, finite element meshing the volume of the computed Boolean union while preserving the set of faces of the first group of cells that are shared with the second group of cells, and merging the finite element meshes of the cells of the second group and the meshed volume of the computed Boolean union.
    Type: Application
    Filed: December 21, 2018
    Publication date: June 27, 2019
    Applicant: Dassault Systemes
    Inventors: Martin-Pierre Schmidt, Jean-Marc Lachaume, David Leo Bonner