Patents by Inventor Martin Rudolf

Martin Rudolf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190371774
    Abstract: A display device is disclosed. In an embodiment a display device includes a carrier including a plurality of switches, a semiconductor layer sequence arranged on the carrier, the semiconductor layer sequence comprising an active region configured to generate primary radiation and forming a plurality of pixels, wherein each switch is configured to control at least one pixel and an optical element arranged on each pixel on a radiation exit surface of the semiconductor layer sequence facing away from the carrier.
    Type: Application
    Filed: January 8, 2018
    Publication date: December 5, 2019
    Inventors: Lorenzo Zini, Martin Rudolf Behringer
  • Publication number: 20190333898
    Abstract: A method of producing an optoelectronic semiconductor component includes A) providing at least three source substrates, wherein each of the source substrates is equipped with a specific type of radiation-emitting semiconductor chips, B) providing a target substrate having a mounting plane configured to mount the semiconductor chips thereto, C) forming platforms on the target substrate, and D) transferring at least some of the semiconductor chips with a wafer-to-wafer process from the source substrates onto the target substrate so that the semiconductor chips transferred to the target substrate maintain their relative position with respect to one another, within the types of semiconductor chips, wherein on the target substrate the semiconductor chips of each type of semiconductor chips have a specific height above the mounting plane due to the platforms so that the semiconductor chips of different types of semiconductor chips have different heights.
    Type: Application
    Filed: January 12, 2018
    Publication date: October 31, 2019
    Inventors: Andreas Plößl, Siegfried Herrmann, Martin Rudolf Behringer, Frank Singer, Thomas Schwarz, Alexander F. Pfeuffer
  • Patent number: 10426817
    Abstract: The present disclosure provides apolipoprotein (apo) mimetics useful for the treatment of age-related macular degeneration (AMD) and other eye disorders. The apo mimetics can be peptides/polypeptides that mimic, e.g., the lipid-clearing action of apolipoproteins such as apoA-I and apoE. The apo mimetics can exert other beneficial effects, such as reduction of inflammation, oxidative stress and neovascularization. The apo mimetics can be used to treat any stages (including the early, intermediate and advance stages) of AMD, and any phenotypes of AMD, including geographic atrophy (GA) (including non-central GA and central GA) and neovascularization (NV) (including types 1, 2 and 3 NV). The apo mimetics can be used alone or in conjunction with other therapeutic agents, such as a complement inhibitor and/or an anti-angiogenic agent, to treat AMD, including atrophic AMD and neovascular AMD, and other eye disorders.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: October 1, 2019
    Assignee: MacRegen, Inc.
    Inventors: Martin Rudolf, Keith Roizman
  • Publication number: 20190245326
    Abstract: A semiconductor laser and a method for producing such a semiconductor laser are disclosed. In an embodiment a semiconductor laser has at least one surface-emitting semiconductor laser chip including a semiconductor layer sequence having at least one active zone configured to generate laser radiation and a light exit surface oriented perpendicular to a growth direction of the semiconductor layer sequence. The laser further includes a diffractive optical element configured to expand and distribute the laser radiation, wherein an optically active structure of the diffractive optical element is made of a material having a refractive index of at least 1.65 regarding a wavelength of maximum intensity of the laser radiation; and a connector engaging at least in places into the optically active structure and completely filling the optically active structure at least in places.
    Type: Application
    Filed: January 9, 2018
    Publication date: August 8, 2019
    Inventors: Hubert Halbritter, Andreas Plößl, Roland Heinrich Enzmann, Martin Rudolf Behringer
  • Publication number: 20190229241
    Abstract: A method for producing an electrical contact on a semiconductor layer and a semiconductor component having an electrical contact are disclosed. In an embodiment a method includes providing a semiconductor layer, forming a plurality of contact rods on the semiconductor layer, wherein the contact rods are formed by a first material and a second material, wherein the first material is applied to the semiconductor layer and the second material is applied to the first material, and wherein a lateral structure of the first material is self-organized, forming a filling layer on the contact rods and in intermediate spaces between the contact rods and exposing the contact rods.
    Type: Application
    Filed: September 26, 2017
    Publication date: July 25, 2019
    Inventors: Martin Rudolf Behringer, Brendan Holland, Jana Sommerfeld, Sabine vom Dorp
  • Patent number: 10340487
    Abstract: Contacting apparatus for contacting an energy storage cell (1) comprising at least one printed circuit board (5) which is provided for discharging the electrical energy stored in the energy storage cell (1), wherein at least one electric pole of the energy storage cell (1) is pressed by a releasable mechanical connection (7) with a specific contact pressing force against an electrically conductive layer (5c) of the at least one printed circuit board (5) which is located on a front side of the at least one printed circuit board (5) facing the energy storage cell (1).
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: July 2, 2019
    Assignee: Technische Universität München
    Inventors: Markus Lienkamp, Martin Rudolf Hammer
  • Publication number: 20180296525
    Abstract: The present disclosure provides therapeutic agents for the treatment of age-related macular degeneration (AMD) and other eye disorders. One or more therapeutic agents can be used to treat any stages (including the early, intermediate and advance stages) of AMD, and any phenotypes of AMD, including geographic atrophy (including non-central GA and central GA) and neovascularization (including types 1, 2 and 3 NV). In certain embodiments, an anti-dyslipidemic agent (e.g., an apolipoprotein mimetic and/or a statin) is used alone to treat or slow the progression of atrophic AMD (including early AMD and intermediate AMD), and/or to prevent or delay the onset of AMD, advanced AMD and/or neovascular AMD. In further embodiments, two or more therapeutic agents (e.g., any combinations of an anti-dyslipidemic agent, an antioxidant, an anti-inflammatory agent, a complement inhibitor, a neuroprotector and an anti-angiogenic agent) that target multiple underlying factors of AMD (e.g.
    Type: Application
    Filed: March 2, 2018
    Publication date: October 18, 2018
    Inventors: Keith ROIZMAN, Martin RUDOLF
  • Publication number: 20180287008
    Abstract: A method for producing an optoelectronic semiconductor component and an optoelectronic semiconductor component are disclosed. In an embodiment the method include A) providing at least two source substrates, wherein each of the source substrates is equipped with a specific type of radiation-emitting semiconductor chip; B) providing a target substrate having a mounting plane, the mounting plane being configured for mounting the semiconductor chip; and C) transferring at least part of the semiconductor chips with a wafer-to-wafer process from the source substrates onto the target substrate so that the semiconductor chips, within one type, maintain their relative position with respect to one another, so that each type of semiconductor chips arranged on the target substrate has a different height above the mounting plane, wherein the semiconductor chips are at least one of at least partially stacked one above the other or at least partially applied to at least one casting layer.
    Type: Application
    Filed: March 29, 2018
    Publication date: October 4, 2018
    Inventors: Andreas Plößl, Siegfried Herrmann, Martin Rudolf Behringer, Frank Singer, Thomas Schwarz
  • Publication number: 20180207233
    Abstract: The present disclosure provides apolipoprotein (apo) mimetics useful for the treatment of age-related macular degeneration (AMD) and other eye disorders. The apo mimetics can be peptides/polypeptides that mimic, e.g., the lipid-clearing action of apolipoproteins such as apoA-I and apoE. The apo mimetics can exert other beneficial effects, such as reduction of inflammation, oxidative stress and neovascularization. The apo mimetics can be used to treat any stages (including the early, intermediate and advance stages) of AMD, and any phenotypes of AMD, including geographic atrophy (GA) (including non-central GA and central GA) and neovascularization (NV) (including types 1, 2 and 3 NV). The apo mimetics can be used alone or in conjunction with other therapeutic agents, such as a complement inhibitor and/or an anti-angiogenic agent, to treat AMD, including atrophic AMD and neovascular AMD, and other eye disorders.
    Type: Application
    Filed: January 24, 2017
    Publication date: July 26, 2018
    Inventors: Martin RUDOLF, Keith ROIZMAN
  • Publication number: 20180212404
    Abstract: A semiconductor laser, a laser assembly and a method of making a semiconductor laser are disclosed. In an embodiment the surface-emitting semiconductor laser includes a carrier having a carrier main side mechanically carrying a semiconductor laser; a first Bragg mirror and a second Bragg mirror so that the second Bragg mirror is further away from the carrier than the first Bragg mirror; a semiconductor layer sequence between the first and the second Bragg mirrors having at least one active zone for generating laser radiation; a metal mirror arranged directly on a side of the first Bragg mirror facing the carrier for reflecting laser radiation generated during operation of the semiconductor laser; a bonding agent layer located between the carrier and the semiconductor layer sequence; a resonator oriented perpendicular to the carrier main side; and an electrically insulating passivation layer located in the metal mirror.
    Type: Application
    Filed: December 18, 2017
    Publication date: July 26, 2018
    Inventors: Roland Enzmann, Hubert Halbritter, Martin Rudolf Behringer
  • Patent number: 10033158
    Abstract: A semiconductor laser, a laser assembly and a method of making a semiconductor laser are disclosed. In an embodiment the surface-emitting semiconductor laser includes a carrier having a carrier main side mechanically carrying a semiconductor laser; a first Bragg mirror and a second Bragg mirror so that the second Bragg mirror is further away from the carrier than the first Bragg mirror; a semiconductor layer sequence between the first and the second Bragg mirrors having at least one active zone for generating laser radiation; a metal mirror arranged directly on a side of the first Bragg mirror facing the carrier for reflecting laser radiation generated during operation of the semiconductor laser; a bonding agent layer located between the carrier and the semiconductor layer sequence; a resonator oriented perpendicular to the carrier main side; and an electrically insulating passivation layer located in the metal mirror.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: July 24, 2018
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Roland Enzmann, Hubert Halbritter, Martin Rudolf Behringer
  • Publication number: 20170317231
    Abstract: A method of debonding a substrate from a layer sequence includes a) providing a composite including a wafer with the substrate, the layer sequence applied to a growth surface of the substrate, and a sacrificial layer arranged between the substrate and the layer sequence, a carrier on a cover surface of the layer sequence facing away from the substrate, and at least two separating trenches extending in the vertical direction through the layer sequence and to and/or through the sacrificial layer, b) attaching a pumping device on the composite and forming a second direct flow path between the separating trenches and the pumping device, c) introducing the composite into an etching bath with an etching solution, d) generating a pressure gradient between separating trenches and the etching solution, and e) debonding the substrate.
    Type: Application
    Filed: October 27, 2015
    Publication date: November 2, 2017
    Inventors: Petrus Sundgren, Marco Englhard, Martin Rudolf Behringer, Christoph Klemp
  • Patent number: 9763330
    Abstract: A circuit board for an optoelectronic semiconductor chip includes an electrically conductive first metal foil, a first electrically insulating foil, an electrically conductive second metal foil, wherein the first electrically insulating foil is applied to the first metal foil at a top side of the first metal foil and mechanically connects thereto, the first electrically insulating foil has a recess in which the first metal foil is exposed, the recess electrically conductively fixes the optoelectronic semiconductor chip to the first metal foil within the recess, the second metal foil is applied at a top side of the first electrically insulating foil, the top side facing away from the first metal foil, and mechanically connects to the electrically insulating foil, the first electrically insulating foil is free of the second metal foil at least in the region of the recess, and the second metal foil electrically contacts the optoelectronic semiconductor chip.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: September 12, 2017
    Assignee: OSRAM GmbH
    Inventors: Martin Rudolf Behringer, Stefan Groetsch
  • Publication number: 20170207431
    Abstract: Contacting apparatus for contacting an energy storage cell (1) comprising at least one printed circuit board (5) which is provided for discharging the electrical energy stored in the energy storage cell (1), wherein at least one electric pole of the energy storage cell (1) is pressed by a releasable mechanical connection (7) with a specific contact pressing force against an electrically conductive layer (5c) of the at least one printed circuit board (5) which is located on a front side of the at least one printed circuit board (5) facing the energy storage cell (1).
    Type: Application
    Filed: June 22, 2015
    Publication date: July 20, 2017
    Inventors: Markus Lienkamp, Martin Rudolf Hammer
  • Patent number: 9466764
    Abstract: The invention relates to an optoelectronic component (101, 301, 501), comprising a substrate (103, 303, 503), on which a semiconductor layer sequence (105, 305, 505) has been placed, wherein the semiconductor layer sequence (105, 305, 505) has at least one identifier (115, 315) for identifying the component (101, 301, 501). The invention also relates to a method for producing an optoelectronic component (101, 301, 501).
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: October 11, 2016
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Martin Rudolf Behringer, Christoph Klemp, Markus Broell
  • Patent number: 9331238
    Abstract: In at least one embodiment, the semiconductor layer sequence (1) is provided for an optoelectronic semiconductor chip (10). The semiconductor layer sequence (1) contains at least three quantum wells (2) which are arranged to generate electromagnetic radiation. Furthermore, the semiconductor layer sequence (1) includes a plurality of barrier layers (3), of which at least one barrier layer is arranged between two adjacent quantum wells (2) in each case. The quantum wells (2) have a first average indium content and the barrier layers (3) have a second, smaller, average indium content. A second average lattice constant of the barrier layers (3) is thereby smaller than a first average lattice constant of the quantum wells (2).
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: May 3, 2016
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Ivar Tångring, Martin Rudolf Behringer
  • Patent number: 9320089
    Abstract: An optoelectronic semiconductor chip includes a semiconductor layer sequence having an active layer provided for generating radiation. The semiconductor chip can be operated in a first operating mode and in a second operating mode. The semiconductor layer sequence emits radiation in the first operating mode, while the semiconductor layer sequence emits no radiation in the second operating mode. The semiconductor layer sequence is operated in the forward direction in the first operating mode and in the reverse direction in the second operating mode. A display including a number of semiconductor chips of this type and a use as a motor vehicle headlight are furthermore specified.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: April 19, 2016
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Martin Rudolf Behringer, Oliver Guenther
  • Publication number: 20150236199
    Abstract: The invention relates to an optoelectronic component (101, 301, 501), comprising a substrate (103, 303, 503), on which a semiconductor layer sequence (105, 305, 505) has been placed, wherein the semiconductor layer sequence (105, 305, 505) has at least one identifier (115, 315) for identifying the component (101, 301, 501). The invention also relates to a method for producing an optoelectronic component (101, 301, 501).
    Type: Application
    Filed: September 25, 2013
    Publication date: August 20, 2015
    Inventors: Martin Rudolf Behringer, Christoph Klemp, Markus Broell
  • Patent number: 8981404
    Abstract: An optoelectronic semiconductor chip includes a semiconductor layer stack and a mirror. The semiconductor layer stack has an active layer for generating electromagnetic radiation. The minor is arranged on an underside of the semiconductor layer stack. The mirror has a first region and a second region, the first region containing silver and the second region containing gold. A method of producing such a semiconductor chip is also defined.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: March 17, 2015
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Martin Rudolf Behringer, Christoph Klemp, Christoph Rupprich
  • Publication number: 20140370291
    Abstract: The present invention relates to an alumina-zirconia nanostructured composite material characterised in that the content of elements other than Al, Zr, Hf, Y, Ce and O is less than 100 ppm, the Cl content is less than 1 ppm, at least one of the components has a mean grain size in the final material smaller than 500 nm, and at least 1/10 of the particles are in the intragranular position. Another object of the invention is the process for obtaining said material, as well as the use thereof.
    Type: Application
    Filed: October 24, 2012
    Publication date: December 18, 2014
    Inventors: Luís Antonio Díaz Rodríguez, Ramón Torrecillas San Millan, Adolfo Fernández Valdés, Marta Suarez Menéndez, Martin Rudolf Schehl