Patents by Inventor Martin Walsh

Martin Walsh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10231073
    Abstract: The methods and apparatus described herein optimally represent full 3D audio mixes (e.g., azimuth, elevation, and depth) as “sound scenes” in which the decoding process facilitates head tracking. Sound scene rendering can be modified for the listener's orientation (e.g., yaw, pitch, roll) and 3D position (e.g., x, y, z). This provides the ability to treat sound scene source positions as 3D positions instead of being restricted to positions relative to the listener. Sound scene rendering can be augmented by encoding depth to a source directly. This provides the ability to modify the transmission format and panning equations to support adding depth indicators during content production. Unlike typical methods that apply depth cues such as loudness and reverberation changes in the mix, this method would enable recovering the distance of a source in the mix so that it can be rendered for the final playback capabilities rather than those on the production side.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: March 12, 2019
    Assignee: DTS, Inc.
    Inventors: Edward Stein, Martin Walsh, Guangji Shi, David Corsello
  • Patent number: 10217451
    Abstract: Embodiments of systems and methods are described for reducing undesired leakage energy produced by a non-front-facing speaker in a multi-speaker system. For example, the multi-speaker system can include an array of forward-facing speakers, one or more upward-facing speakers, and/or one or more side-facing speakers. Filters coupled to any two of the speakers in the multi-speaker system can generate audio signals output by the coupled speakers to reduce, attenuate, or cancel a portion of an audio signal output by one or more non-front-facing speakers that acoustically propagates along a direct path from the respective non-front-facing speaker to a listening position in a listening area in front of the multi-speaker system.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: February 26, 2019
    Assignee: DTS, Inc.
    Inventors: Suketu Kamdar, Zesen Zhuang, Martin Walsh, Edward Stein, Michael M. Goodwin, Jean-Marc Jot
  • Patent number: 10200806
    Abstract: The method and apparatus described herein make use of multiple sets of head related transfer functions (HRTFs) that have been synthesized or measured at various distances from a reference head, spanning from the near-field to the boundary of the far-field. Additional synthetic or measured transfer functions maybe used to extend to the interior of the head, i.e., for distances closer than near-field. In addition, the relative distance-related gains of each set of HRTFs are normalized to the far-field HRTF gains.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: February 5, 2019
    Assignee: DTS, Inc.
    Inventors: Edward Stein, Martin Walsh, Guangji Shi, David Corsello
  • Patent number: 10187739
    Abstract: A sound field coding system and method that provides flexible capture, distribution, and reproduction of immersive audio recordings encoded in a generic digital audio format compatible with standard two-channel or multi-channel reproduction systems. This end-to-end system and method mitigates any impractical need for standard multi-channel microphone array configurations in consumer mobile devices such as smart phones or cameras. The system and method capture and spatially encode two-channel or multi-channel immersive audio signals that are compatible with legacy playback systems from flexible multi-channel microphone array configurations.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: January 22, 2019
    Assignee: DTS, Inc.
    Inventors: Michael M. Goodwin, Jean-Marc Jot, Martin Walsh
  • Patent number: 10070245
    Abstract: A method and apparatus may be used to perform personalized audio virtualization. The apparatus may include a speaker, a headphone (over-the-ear, on-ear, or in-ear), a microphone, a computer, a mobile device, a home theater receiver, a television, a Blu-ray (BD) player, a compact disc (CD) player, a digital media player, or the like. The apparatus may be configured to receive an audio signal, scale the audio signal, and perform a convolution and reverberation on the scaled audio signal to produce a convolved audio signal. The apparatus may be configured to filter the convolved audio signal and process the filtered audio signal for output.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: September 4, 2018
    Assignee: DTS, Inc.
    Inventors: Martin Walsh, Edward Stein, Michael C. Kelly, Prashant Velagaleti
  • Publication number: 20180227198
    Abstract: The systems, devices, and techniques described herein are directed to providing digital visualizations in a telecommunications environment. A centralized server may store information associated with services and equipment available to operate on the telecommunication network. The centralized server may manage and update information provided to electronic devices to facilitate education and interaction between associates and users regarding services and equipment offers. Presentations to users may include static, dynamic, and interactive content. Network usage information such as signal strength and speed may be obtain from user electronic devices and aggregated to generate network coverage information over time and based on a location. Digital visualizations facilitate education and interaction at retail outlets to reduce message fragmentation and to increase engagement with users.
    Type: Application
    Filed: June 7, 2017
    Publication date: August 9, 2018
    Inventor: Daniel Martin Walsh
  • Patent number: 10034114
    Abstract: Embodiments of a virtual surround-sound system and methods for simulating surround-sound are generally described herein. Other embodiments may be described and claimed. In some embodiments, a processing module may include spatial processor spatially processes surround-left and surround-right channel signals and front-left and front-right channel signals and combines the spatially-processed signals for providing to drivers of center speaker after crosstalk cancellation and combining with a center-channel signal. In some embodiments, the processing module may include circuitry to cause the spatial processor to refrain from spatially processing either the front-left and front-right channel signals when front-left and/or front-right speakers are connected.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: July 24, 2018
    Assignee: Creative Technology Ltd
    Inventor: Martin Walsh
  • Publication number: 20180197526
    Abstract: Embodiments of systems and methods are described for reducing undesired leakage energy produced by a non-front-facing speaker in a multi-speaker system. For example, the multi-speaker system can include an array of forward-facing speakers, one or more upward-facing speakers, and/or one or more side-facing speakers. Filters coupled to any two of the speakers in the multi-speaker system can generate audio signals output by the coupled speakers to reduce, attenuate, or cancel a portion of an audio signal output by one or more non-front-facing speakers that acoustically propagates along a direct path from the respective non-front-facing speaker to a listening position in a listening area in front of the multi-speaker system.
    Type: Application
    Filed: January 5, 2018
    Publication date: July 12, 2018
    Inventors: Suketu Kamdar, Zesen Zhuang, Martin Walsh, Edward Stein, Michael M. Goodwin, Jean-Marc Jot
  • Publication number: 20180136898
    Abstract: A method and a system for calibrating a surround sound system are disclosed. The calibration system can provide a graphical user interface for display comprising a visual representation of the room hosting a multichannel surround sound system. The graphical user interface can permit user input of gestures to place or make changes to the placement of icons representing one or more loudspeakers and a listener. The calibration system can estimate the positions of the one or more loudspeakers or the listener based on the placement of the icons in the model room. A spatial calibration based on the estimated positions can then be performed such that the multichannel surround sound system can render sound scenes more accurately.
    Type: Application
    Filed: November 21, 2016
    Publication date: May 17, 2018
    Inventors: Guangji Shi, Michael M. Goodwin, Martin Walsh
  • Patent number: 9973874
    Abstract: The methods and apparatus described herein optimally represent full 3D audio mixes (e.g., azimuth, elevation, and depth) as “sound scenes” in which the decoding process facilitates head tracking. Sound scene rendering can be performed for the listener's orientation (e.g., yaw, pitch, roll) and 3D position (e.g., x, y, z), and can be modified for a change in the listener's orientation or 3D position. As described below, the ability to render an audio object in both the near-field and far-field enables the ability to fully render depth of not just objects, but any spatial audio mix decoded with active steering/panning, such as Ambisonics, matrix encoding, etc., thereby enabling full translational head tracking (e.g., user movement) beyond simple rotation in the horizontal plane, or 6-degrees-of-freedom (6-DOF) tracking and rendering.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: May 15, 2018
    Assignee: DTS, Inc.
    Inventors: Edward Stein, Martin Walsh, Guangji Shi, David Corsello
  • Patent number: 9972429
    Abstract: A superconducting current pump arranged to cause a DC electrical current to flow through a superconducting circuit accommodated within a cryogenic enclosure of a cryostat comprises a rotor external to the cryogenic enclosure and a stator within the cryogenic enclosure, the rotor and stator separated by a gap through which passes a thermally insulating wall of the cryogenic enclosure, the rotor and the stator comprising at least in part a ferromagnetic material to concentrate magnetic flux in a magnetic circuit across the gap between the rotor and the stator and through the wall, so that movement of the rotor external to the cryogenic enclosure relative to the stator within the cryogenic enclosure induces a DC transport current to flow around the superconducting circuit within the cryogenic enclosure.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: May 15, 2018
    Inventors: Rowan Martin Walsh, Christopher William Bumby, Rodney Alan Badcock, Robert Andrew Slade, Zhenan Jiang, Kent Anthony Hamilton, Michael Graeme Fee
  • Publication number: 20180098174
    Abstract: A sound field coding system and method that provides flexible capture, distribution, and reproduction of immersive audio recordings encoded in a generic digital audio format compatible with standard two-channel or multi-channel reproduction systems. This end-to-end system and method mitigates any impractical need for standard multi-channel microphone array configurations in consumer mobile devices such as smart phones or cameras. The system and method capture and spatially encode two-channel or multi-channel immersive audio signals that are compatible with legacy playback systems from flexible multi-channel microphone array configurations.
    Type: Application
    Filed: October 16, 2017
    Publication date: April 5, 2018
    Applicant: DTS, Inc.
    Inventors: Michael M. Goodwin, Jean-Marc Jot, Martin Walsh
  • Patent number: 9865245
    Abstract: Embodiments of systems and methods are described for reducing undesired leakage energy produced by a non-front-facing speaker in a multi-speaker system. For example, the multi-speaker system can include an array of forward-facing speakers, one or more upward-facing speakers, and/or one or more side-facing speakers. Filters coupled to any two of the speakers in the multi-speaker system can generate audio signals output by the coupled speakers to reduce, attenuate, or cancel a portion of an audio signal output by one or more non-front-facing speakers that acoustically propagates along a direct path from the respective non-front-facing speaker to a listening position in a listening area in front of the multi-speaker system.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: January 9, 2018
    Assignee: DTS, Inc.
    Inventors: Suketu Kamdar, Zesen Zhuang, Martin Walsh, Edward Stein, Michael M. Goodwin, Jean-Marc Jot
  • Publication number: 20170366914
    Abstract: The methods and apparatus described herein optimally represent full 3D audio mixes (e.g., azimuth, elevation, and depth) as “sound scenes” in which the decoding process facilitates head tracking. Sound scene rendering can be performed for the listener's orientation (e.g., yaw, pitch, roll) and 3D position (e.g., x, y, z), and can be modified for a change in the listener's orientation or 3D position. As described below, the ability to render an audio object in both the near-field and far-field enables the ability to fully render depth of not just objects, but any spatial audio mix decoded with active steering/panning, such as Ambisonics, matrix encoding, etc., thereby enabling full translational head tracking (e.g., user movement) beyond simple rotation in the horizontal plane, or 6-degrees-of-freedom (6-DOF) tracking and rendering.
    Type: Application
    Filed: June 16, 2017
    Publication date: December 21, 2017
    Inventors: EDWARD STEIN, MARTIN WALSH, GUANGJI SHI, DAVID CORSELLO
  • Publication number: 20170366912
    Abstract: The methods and apparatus described herein optimally represent full 3D audio mixes (e.g., azimuth, elevation, and depth) as “sound scenes” in which the decoding process facilitates head tracking. Sound scene rendering can be modified for the listener's orientation (e.g., yaw, pitch, roll) and 3D position (e.g., x, y, z). This provides the ability to treat sound scene source positions as 3D positions instead of being restricted to positions relative to the listener. Sound scene rendering can be augmented by encoding depth to a source directly. This provides the ability to modify the transmission format and panning equations to support adding depth indicators during content production. Unlike typical methods that apply depth cues such as loudness and reverberation changes in the mix, this method would enable recovering the distance of a source in the mix so that it can be rendered for the final playback capabilities rather than those on the production side.
    Type: Application
    Filed: June 16, 2017
    Publication date: December 21, 2017
    Inventors: Edward Stein, Martin Walsh, Guangji Shi, David Corsello
  • Publication number: 20170366913
    Abstract: The method and apparatus described herein make use of multiple sets of head related transfer functions (HRTFs) that have been synthesized or measured at various distances from a reference head, spanning from the near-field to the boundary of the far-field. Additional synthetic or measured transfer functions maybe used to extend to the interior of the head, i.e., for distances closer than near-field. In addition, the relative distance-related gains of each set of HRTFs are normalized to the far-field HRTF gains.
    Type: Application
    Filed: June 16, 2017
    Publication date: December 21, 2017
    Inventors: Edward Stein, Martin Walsh, Guangji Shi, David Corsello
  • Patent number: 9794721
    Abstract: A sound field coding system and method that provides flexible capture, distribution, and reproduction of immersive audio recordings encoded in a generic digital audio format compatible with standard two-channel or multi-channel reproduction systems. This end-to-end system and method mitigates any impractical need for standard multi-channel microphone array configurations in consumer mobile devices such as smart phones or cameras. The system and method capture and spatially encode two-channel or multi-channel immersive audio signals that are compatible with legacy playback systems from flexible multi-channel microphone array configurations.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: October 17, 2017
    Assignee: DTS, Inc.
    Inventors: Michael M. Goodwin, Jean-Marc Jot, Martin Walsh
  • Patent number: 9794715
    Abstract: A system can include a hardware processor that can receive left and right audio signals and process the left and right audio signals to generate three or more processed audio signals. The three or more processed audio signals can include a left audio signal, a right audio signal, and a center audio signal. The processor can also filter each of the left and right audio signals with one or more first virtualization filters to produce filtered left and right signals. The processor can also filter a portion of the center audio signal with a second virtualization filter to produce a filtered center signal. Further, the processor can combine the filtered left signal, filtered right signal, and filtered center signal to produce left and right output signals and output the filtered left and right output signals.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: October 17, 2017
    Assignee: DTS LLC
    Inventor: Martin Walsh
  • Patent number: 9754597
    Abstract: A digital signal is processed by splitting it into at least two frequency subbands and the two subband signals are downsampled. A filter is applied in at least one of the subband signals. At least one of the phase and magnitude of the subband filtered signals is matched in the transition frequency band between the two subbands.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: September 5, 2017
    Assignee: Creative Technology Ltd
    Inventors: Jean-Marc Jot, Martin Walsh, Jean Laroche, Mark Phillips, Michael Chorn, Michael M. Goodwin
  • Publication number: 20170236627
    Abstract: A superconducting current pump arranged to cause a DC electrical current to flow through a superconducting circuit accommodated within a cryogenic enclosure of a cryostat comprises a rotor external to the cryogenic enclosure and a stator within the cryogenic enclosure, the rotor and stator separated by a gap through which passes a thermally insulating wall of the cryogenic enclosure, the rotor and the stator comprising at least in part a ferromagnetic material to concentrate magnetic flux in a magnetic circuit across the gap between the rotor and the stator and through the wall, so that movement of the rotor external to the cryogenic enclosure relative to the stator within the cryogenic enclosure induces a DC transport current to flow around the superconducting circuit within the cryogenic enclosure.
    Type: Application
    Filed: August 11, 2015
    Publication date: August 17, 2017
    Inventors: Rowan Martin Walsh, Christopher William Bumby, Rodney Alan Badcock, Robert Andrew Slade, Zhenan Jiang, Kent Anthony Hamilton, Michael Graeme Fee