Patents by Inventor Masafumi Nomura

Masafumi Nomura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240117592
    Abstract: A posture recovery apparatus capable of automatically recovering a posture of a work machine is realized. The setting unit (11) sets a safe posture range based on a posture of the work machine before operation. The acquisition unit (12) acquires posture information on the work machine in operation. In a case where, by reference to the posture information, it has been detected that the posture of the work machine in operation has deviated from the safe posture range for a first period, the recovery unit (13) causes the work machine to carry out a recovery operation.
    Type: Application
    Filed: January 17, 2022
    Publication date: April 11, 2024
    Applicant: NEC Corporation
    Inventors: Tatsuya Yoshimoto, Hiroshi Yoshida, Masafumi Nomura
  • Publication number: 20230392345
    Abstract: Realized is a loading action which is carried out by a work machine while taking into consideration an upper limit load. A control apparatus (10) includes: an acquisition section (11) of acquiring weight information on a weight of a target object which has been excavated by a work machine; and an action control section (12) of controlling an action of the work machine such that a load of the target object to be loaded into a loading destination is adjusted based on the weight information.
    Type: Application
    Filed: October 7, 2021
    Publication date: December 7, 2023
    Applicant: NEC Corporation
    Inventors: Hiroshi YOSHIDA, Tatsuya YOSHIMOTO, Yosuke KAKUNO, Masafumi NOMURA
  • Patent number: 10453927
    Abstract: In a transistor including an oxide semiconductor film, movement of hydrogen and nitrogen to the oxide semiconductor film is suppressed. Further, in a semiconductor device using a transistor including an oxide semiconductor film, a change in electrical characteristics is suppressed and reliability is improved. A transistor including an oxide semiconductor film and a nitride insulating film provided over the transistor are included, and an amount of hydrogen molecules released from the nitride insulating film by thermal desorption spectroscopy is less than 5×1021 molecules/cm3, preferably less than or equal to 3×1021 molecules/cm3, more preferably less than or equal to 1×1021 molecules/cm3, and an amount of ammonia molecules released from the nitride insulating film by thermal desorption spectroscopy is less than 1×1022 molecules/cm3, preferably less than or equal to 5×1021 molecules/cm3, more preferably less than or equal to 1×1021 molecules/cm3.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: October 22, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toshinari Sasaki, Takashi Hamochi, Toshiyuki Miyamoto, Masafumi Nomura, Junichi Koezuka, Kenichi Okazaki
  • Patent number: 10388875
    Abstract: A method for manufacturing a flexible semiconductor device is disclosed. The method includes: forming a separation layer of a metal over a substrate; treating the separation layer with plasma under an atmosphere containing nitrogen, oxygen, silicon, and hydrogen; forming a layer over the plasma-treated separation layer, the layer being capable of supplying hydrogen and nitrogen to the separation layer; forming a functional layer over the separation layer; performing heat treatment to promote the release of hydrogen and nitrogen from the layer; and separating the substrate at the separation layer. The method allows the formation of an extremely thin oxide layer over the separation layer, which facilitates the separation, reduces the probability that the oxide layer remains under the layer, and contributes to the increase in efficiency of a device included in the functional layer.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: August 20, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Seiji Yasumoto, Masataka Sato, Masafumi Nomura, Toshiyuki Miyamoto
  • Publication number: 20190067486
    Abstract: To provide a semiconductor device including an oxide semiconductor in which a change in electrical characteristics is suppressed or whose reliability is improved. In a semiconductor device including an oxide semiconductor film in which a channel formation region is formed, an insulating film which suppresses entry of water and contains at least nitrogen and an insulating film which suppresses entry of nitrogen released form the insulating film are provided over the oxide semiconductor film. As water entering the oxide semiconductor film, water contained in the air, water in a film provided over the insulating film which suppresses entry of water, or the like can be given. Further, as the insulating film which suppresses entry of water, a nitride insulating film can be used, and the amount of hydrogen molecules released by heating from the nitride insulating film is smaller than 5.0×1021 molecules/cm3.
    Type: Application
    Filed: September 4, 2018
    Publication date: February 28, 2019
    Inventors: Shunpei YAMAZAKI, Toshinari SASAKI, Takashi HAMOCHI, Toshiyuki MIYAMOTO, Masafumi NOMURA, Junichi KOEZUKA, Kenichi OKAZAKI
  • Patent number: 10170599
    Abstract: In a semiconductor device including an oxide semiconductor, the amount of oxygen vacancies is reduced. Moreover, electrical characteristics of a semiconductor device including an oxide semiconductor are improved. The semiconductor device includes a transistor including a gate electrode over a substrate, a gate insulating film covering the gate electrode, an oxide semiconductor film overlapping with the gate electrode with the gate insulating film provided therebetween, and a pair of electrodes in contact with the oxide semiconductor film; and over the transistor, a first insulating film covering the gate insulating film, the oxide semiconductor film, and the pair of electrodes; and a second insulating film covering the first insulating film. An etching rate of the first insulating film is lower than or equal to 10 nm/min and lower than an etching rate of the second insulating film when etching is performed at 25° C. with 0.5 weight % of hydrofluoric acid.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: January 1, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kenichi Okazaki, Toshiyuki Miyamoto, Masafumi Nomura, Takashi Hamochi, Shunpei Yamazaki, Toshinari Sasaki
  • Patent number: 10141337
    Abstract: A nitride insulating film which prevents diffusion of hydrogen into an oxide semiconductor film in a transistor including an oxide semiconductor is provided. Further, a semiconductor device which has favorable electrical characteristics by using a transistor including a silicon semiconductor and a transistor including an oxide semiconductor is provided. Two nitride insulating films having different functions are provided between the transistor including a silicon semiconductor and the transistor including an oxide semiconductor. Specifically, a first nitride insulating film which contains hydrogen is provided over the transistor including a silicon semiconductor, and a second nitride insulating film which has a lower hydrogen content than the first nitride insulating film and functions as a barrier film against hydrogen is provided between the first nitride insulating film and the transistor including an oxide semiconductor.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: November 27, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Tetsuhiro Tanaka, Yoshinori Ieda, Toshiyuki Miyamoto, Masafumi Nomura, Takashi Hamochi, Kenichi Okazaki, Mitsuhiro Ichijo, Toshiya Endo
  • Patent number: 10134852
    Abstract: In a transistor including an oxide semiconductor film, movement of hydrogen and nitrogen to the oxide semiconductor film is suppressed. Further, in a semiconductor device using a transistor including an oxide semiconductor film, a change in electrical characteristics is suppressed and reliability is improved. A transistor including an oxide semiconductor film and a nitride insulating film provided over the transistor are included, and an amount of hydrogen molecules released from the nitride insulating film by thermal desorption spectroscopy is less than 5×1021 molecules/cm3, preferably less than or equal to 3×1021 molecules/cm3, more preferably less than or equal to 1×1021 molecules/cm3, and an amount of ammonia molecules released from the nitride insulating film by thermal desorption spectroscopy is less than 1×1022 molecules/cm3, preferably less than or equal to 5×1021 molecules/cm3, more preferably less than or equal to 1×1021 molecules/cm3.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: November 20, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toshinari Sasaki, Takashi Hamochi, Toshiyuki Miyamoto, Masafumi Nomura, Junichi Koezuka, Kenichi Okazaki
  • Publication number: 20180145138
    Abstract: In a transistor including an oxide semiconductor film, movement of hydrogen and nitrogen to the oxide semiconductor film is suppressed. Further, in a semiconductor device using a transistor including an oxide semiconductor film, a change in electrical characteristics is suppressed and reliability is improved. A transistor including an oxide semiconductor film and a nitride insulating film provided over the transistor are included, and an amount of hydrogen molecules released from the nitride insulating film by thermal desorption spectroscopy is less than 5×1021 molecules/cm3, preferably less than or equal to 3×1021 molecules/cm3, more preferably less than or equal to 1×1021 molecules/cm3, and an amount of ammonia molecules released from the nitride insulating film by thermal desorption spectroscopy is less than 1×1022 molecules/cm3, preferably less than or equal to 5×1021 molecules/cm3, more preferably less than or equal to 1×1021 molecules/cm3.
    Type: Application
    Filed: January 18, 2018
    Publication date: May 24, 2018
    Inventors: Toshinari SASAKI, Takashi HAMOCHI, Toshiyuki MIYAMOTO, Masafumi NOMURA, Junichi KOEZUKA, Kenichi OKAZAKI
  • Patent number: 9966475
    Abstract: A highly reliable semiconductor device the yield of which can be prevented from decreasing due to electrostatic discharge damage is provided. A semiconductor device is provided which includes a gate electrode layer, a gate insulating layer over the gate electrode layer, an oxide insulating layer over the gate insulating layer, an oxide semiconductor layer being above and in contact with the oxide insulating layer and overlapping with the gate electrode layer, and a source electrode layer and a drain electrode layer electrically connected to the oxide semiconductor layer. The gate insulating layer includes a silicon film containing nitrogen. The oxide insulating layer contains one or more metal elements selected from the constituent elements of the oxide semiconductor layer. The thickness of the gate insulating layer is larger than that of the oxide insulating layer.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: May 8, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Toshiyuki Miyamoto, Masafumi Nomura, Takashi Hamochi, Kenichi Okazaki
  • Publication number: 20180072202
    Abstract: Multiple types of attachment positions are provided such that at least two of at least three first holes and at least two of at least three second holes align. At least one of the at least two of the at least three first holes that aligns with one of the at least two of the at least three second holes in one of the multiple types of attachment positions does not align with the second holes in a remainder of the multiple types of attachment positions. Alternatively, at least one of the at least two of the at least three second holes that align with one of the at least two of the at least three first holes in one of the multiple types of attachment positions does not align with the at least three first holes in the remainder of the multiple types of attachment positions.
    Type: Application
    Filed: September 13, 2017
    Publication date: March 15, 2018
    Applicant: TOYOTA BOSHOKU KABUSHIKI KAISHA
    Inventors: Yoshiyuki KUMAZAKI, Masafumi NOMURA
  • Publication number: 20180047753
    Abstract: A nitride insulating film which prevents diffusion of hydrogen into an oxide semiconductor film in a transistor including an oxide semiconductor is provided. Further, a semiconductor device which has favorable electrical characteristics by using a transistor including a silicon semiconductor and a transistor including an oxide semiconductor is provided. Two nitride insulating films having different functions are provided between the transistor including a silicon semiconductor and the transistor including an oxide semiconductor. Specifically, a first nitride insulating film which contains hydrogen is provided over the transistor including a silicon semiconductor, and a second nitride insulating film which has a lower hydrogen content than the first nitride insulating film and functions as a barrier film against hydrogen is provided between the first nitride insulating film and the transistor including an oxide semiconductor.
    Type: Application
    Filed: October 3, 2017
    Publication date: February 15, 2018
    Inventors: Shunpei YAMAZAKI, Tetsuhiro TANAKA, Yoshinori IEDA, Toshiyuki MIYAMOTO, Masafumi NOMURA, Takashi HAMOCHI, Kenichi OKAZAKI, Mitsuhiro ICHIJO, Toshiya ENDO
  • Publication number: 20180047902
    Abstract: A method for manufacturing a flexible semiconductor device is disclosed. The method includes: forming a separation layer of a metal over a substrate; treating the separation layer with plasma under an atmosphere containing nitrogen, oxygen, silicon, and hydrogen; forming a layer over the plasma-treated separation layer, the layer being capable of supplying hydrogen and nitrogen to the separation layer; forming a functional layer over the separation layer; performing heat treatment to promote the release of hydrogen and nitrogen from the layer; and separating the substrate at the separation layer. The method allows the formation of an extremely thin oxide layer over the separation layer, which facilitates the separation, reduces the probability that the oxide layer remains under the layer, and contributes to the increase in efficiency of a device included in the functional layer.
    Type: Application
    Filed: October 10, 2017
    Publication date: February 15, 2018
    Inventors: Seiji YASUMOTO, Masataka SATO, Masafumi NOMURA, Toshiyuki MIYAMOTO
  • Patent number: 9831325
    Abstract: A highly reliable semiconductor device the yield of which can be prevented from decreasing due to electrostatic discharge damage is provided. A semiconductor device is provided which includes a gate electrode layer, a first gate insulating layer over the gate electrode layer, a second gate insulating layer being over the first gate insulating layer and having a smaller thickness than the first gate insulating layer, an oxide semiconductor layer over the second gate insulating layer, and a source electrode layer and a drain electrode layer electrically connected to the oxide semiconductor layer. The first gate insulating layer contains nitrogen and has a spin density of 1×1017 spins/cm3 or less corresponding to a signal that appears at a g-factor of 2.003 in electron spin resonance spectroscopy. The second gate insulating layer contains nitrogen and has a lower hydrogen concentration than the first gate insulating layer.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: November 28, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toshiyuki Miyamoto, Masafumi Nomura, Takashi Hamochi, Kenichi Okazaki
  • Patent number: 9799829
    Abstract: A method for manufacturing a flexible semiconductor device is disclosed. The method includes: forming a separation layer of a metal over a substrate; treating the separation layer with plasma under an atmosphere containing nitrogen, oxygen, silicon, and hydrogen; forming a layer over the plasma-treated separation layer, the layer being capable of supplying hydrogen and nitrogen to the separation layer; forming a functional layer over the separation layer; performing heat treatment to promote the release of hydrogen and nitrogen from the layer; and separating the substrate at the separation layer. The method allows the formation of an extremely thin oxide layer over the separation layer, which facilitates the separation, reduces the probability that the oxide layer remains under the layer, and contributes to the increase in efficiency of a device included in the functional layer.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: October 24, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Seiji Yasumoto, Masataka Sato, Masafumi Nomura, Toshiyuki Miyamoto
  • Patent number: 9793295
    Abstract: A nitride insulating film which prevents diffusion of hydrogen into an oxide semiconductor film in a transistor including an oxide semiconductor is provided. Further, a semiconductor device which has favorable electrical characteristics by using a transistor including a silicon semiconductor and a transistor including an oxide semiconductor is provided. Two nitride insulating films having different functions are provided between the transistor including a silicon semiconductor and the transistor including an oxide semiconductor. Specifically, a first nitride insulating film which contains hydrogen is provided over the transistor including a silicon semiconductor, and a second nitride insulating film which has a lower hydrogen content than the first nitride insulating film and functions as a barrier film against hydrogen is provided between the first nitride insulating film and the transistor including an oxide semiconductor.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: October 17, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Tetsuhiro Tanaka, Yoshinori Ieda, Toshiyuki Miyamoto, Masafumi Nomura, Takashi Hamochi, Kenichi Okazaki, Mitsuhiro Ichijo, Toshiya Endo
  • Publication number: 20170288063
    Abstract: A highly reliable semiconductor device the yield of which can be prevented from decreasing due to electrostatic discharge damage is provided. A semiconductor device is provided which includes a gate electrode layer, a gate insulating layer over the gate electrode layer, an oxide insulating layer over the gate insulating layer, an oxide semiconductor layer being above and in contact with the oxide insulating layer and overlapping with the gate electrode layer, and a source electrode layer and a drain electrode layer electrically connected to the oxide semiconductor layer. The gate insulating layer includes a silicon film containing nitrogen. The oxide insulating layer contains one or more metal elements selected from the constituent elements of the oxide semiconductor layer. The thickness of the gate insulating layer is larger than that of the oxide insulating layer.
    Type: Application
    Filed: June 22, 2017
    Publication date: October 5, 2017
    Inventors: Shunpei YAMAZAKI, Toshiyuki MIYAMOTO, Masafumi NOMURA, Takashi HAMOCHI, Kenichi OKAZAKI
  • Patent number: 9711652
    Abstract: A highly reliable semiconductor device the yield of which can be prevented from decreasing due to electrostatic discharge damage is provided. A semiconductor device is provided which includes a gate electrode layer, a gate insulating layer over the gate electrode layer, an oxide insulating layer over the gate insulating layer, an oxide semiconductor layer being above and in contact with the oxide insulating layer and overlapping with the gate electrode layer, and a source electrode layer and a drain electrode layer electrically connected to the oxide semiconductor layer. The gate insulating layer includes a silicon film containing nitrogen. The oxide insulating layer contains one or more metal elements selected from the constituent elements of the oxide semiconductor layer. The thickness of the gate insulating layer is larger than that of the oxide insulating layer.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: July 18, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Toshiyuki Miyamoto, Masafumi Nomura, Takashi Hamochi, Kenichi Okazaki
  • Publication number: 20160372492
    Abstract: A nitride insulating film which prevents diffusion of hydrogen into an oxide semiconductor film in a transistor including an oxide semiconductor is provided. Further, a semiconductor device which has favorable electrical characteristics by using a transistor including a silicon semiconductor and a transistor including an oxide semiconductor is provided. Two nitride insulating films having different functions are provided between the transistor including a silicon semiconductor and the transistor including an oxide semiconductor. Specifically, a first nitride insulating film which contains hydrogen is provided over the transistor including a silicon semiconductor, and a second nitride insulating film which has a lower hydrogen content than the first nitride insulating film and functions as a barrier film against hydrogen is provided between the first nitride insulating film and the transistor including an oxide semiconductor.
    Type: Application
    Filed: August 30, 2016
    Publication date: December 22, 2016
    Inventors: Shunpei YAMAZAKI, Tetsuhiro TANAKA, Yoshinori IEDA, Toshiyuki MIYAMOTO, Masafumi NOMURA, Takashi HAMOCHI, Kenichi OKAZAKI, Mitsuhiro ICHIJO, Toshiya ENDO
  • Publication number: 20160315178
    Abstract: A highly reliable semiconductor device the yield of which can be prevented from decreasing due to electrostatic discharge damage is provided. A semiconductor device is provided which includes a gate electrode layer, a first gate insulating layer over the gate electrode layer, a second gate insulating layer being over the first gate insulating layer and having a smaller thickness than the first gate insulating layer, an oxide semiconductor layer over the second gate insulating layer, and a source electrode layer and a drain electrode layer electrically connected to the oxide semiconductor layer. The first gate insulating layer contains nitrogen and has a spin density of 1×1017 spins/cm3 or less corresponding to a signal that appears at a g-factor of 2.003 in electron spin resonance spectroscopy. The second gate insulating layer contains nitrogen and has a lower hydrogen concentration than the first gate insulating layer.
    Type: Application
    Filed: July 7, 2016
    Publication date: October 27, 2016
    Inventors: Toshiyuki MIYAMOTO, Masafumi NOMURA, Takashi HAMOCHI, Kenichi OKAZAKI