Patents by Inventor Masahiko Suzuki

Masahiko Suzuki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210075991
    Abstract: One embodiment provides a communication device for transmitting a video to an external device through first to third transmission lines, the communication device including: a transmission module configured to transit first color difference information and second color difference information concerned with adjacent two pixels through the first transmission line, to transmit first luminance information concerned with one of the two pixels through the second transmission line, and to transmit second luminance information concerned with the other of the two pixels through the third transmission line.
    Type: Application
    Filed: November 19, 2020
    Publication date: March 11, 2021
    Inventors: Nobuaki Suzuki, Makoto Sato, Masahiko Mawatari
  • Patent number: 10935911
    Abstract: A fixing device includes an endless belt rotatable in a predetermined direction of rotation and a nip formation assembly disposed opposite an inner circumferential surface of the endless belt. An opposed rotary body is pressed against the nip formation assembly via the endless belt to form a fixing nip between the endless belt and the opposed rotary body through which a recording medium bearing a toner image is conveyed. A belt holder contacts and supports each lateral end of the endless belt in an axial direction thereof. The belt holder is isolated from the opposed rotary body with a first interval interposed therebetween in the axial direction of the endless belt.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: March 2, 2021
    Assignee: Ricoh Company, Ltd.
    Inventors: Teppei Kawata, Masahiko Satoh, Masaaki Yoshikawa, Kenji Ishii, Hiroshi Yoshinaga, Tadashi Ogawa, Takahiro Imada, Hiromasa Takagi, Kazuya Saito, Naoki Iwaya, Kensuke Yamaji, Takamasa Hase, Toshihiko Shimokawa, Shuutaroh Yuasa, Takuya Seshita, Takeshi Uchitani, Arinobu Yoshiura, Hajime Gotoh, Akira Suzuki
  • Patent number: 10928691
    Abstract: An active matrix substrate 10 includes: switching elements 120 that are connected with gate lines and data lines provided on a substrate; pixel electrodes 130 that are connected with the switching elements 120; counter electrodes 140 that overlap with the pixel electrodes 130 when viewed in a plan view; a flattening film 154; and lines 142. The flattening film 154 covers the switching elements 120, and first contact holes CH1 that pass through the flattening film 154 are formed at positions that overlap with the lines 142 when viewed in a plan view. The pixel electrodes 130 and the counter electrodes 140 are arranged so that each of the same partially covers the flattening film 154. The line 142 and the counter electrode 140 are connected with each other in the first contact hole CH1.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: February 23, 2021
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Setsuji Nishimiya, Tohru Daitoh, Hajime Imai, Tetsuo Kikuchi, Masahiko Suzuki, Teruyuki Ueda, Masamitsu Yamanaka, Kengo Hara, Hitoshi Takahata
  • Publication number: 20210036158
    Abstract: A semiconductor device (100) includes a TFT (10) supported on a substrate (11), wherein the TFT (10) includes a gate electrode (12g), a gate insulating layer (14) that covers the gate electrode (12g), and an oxide semiconductor layer (16) that is formed on the gate insulating layer (14). The oxide semiconductor layer 16 has a layered structure including a first oxide semiconductor layer (16a) in contact with the gate insulating layer (14) and a second oxide semiconductor layer (16b) layered on the first oxide semiconductor layer (16a). The first oxide semiconductor layer (16a) and the second oxide semiconductor layer (16b) both include In, Ga and Zn; an In atomic ratio of the first oxide semiconductor layer (16a) is greater than a Zn atomic ratio thereof, and an In atomic ratio of the second oxide semi-conductor layer (16b) is smaller than a Zn atomic ratio thereof; and the oxide semiconductor layer (16) has a side surface of a forward tapered shape.
    Type: Application
    Filed: March 8, 2018
    Publication date: February 4, 2021
    Inventors: Setsuji NISHIMIYA, Tohru DAITOH, Masahiko SUZUKI, Kengo HARA, Hajime IMAI, Toshikatsu ITOH, Hideki KITAGAWA, Tetsuo KIKUCHI, Teruyuki UEDA
  • Patent number: 10896831
    Abstract: A supply part includes a first partition, a second partition under the first partition, a third partition under the second partition, a first flow path between the first partition and the second partition allowing a first gas to be introduced therein, a second flow path between the second partition and the third partition allowing a second gas to be introduced therein, a first piping extending from the second partition to reach below the third partition and being communicated with the first flow path, a second piping extending from the third partition to reach below the third partition and being communicated with the second flow path, and a convex portion provided on an outer circumferential surface of the first piping or an inner circumferential surface of the second piping protruding from one of the outer circumferential surface and the inner circumferential surface toward the other one.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: January 19, 2021
    Assignees: NuFlare Technology, Inc., Showa Denko K.K., Central Research Institute of Electric Power Industry
    Inventors: Kunihiko Suzuki, Naohisa Ikeya, Keisuke Fukada, Masahiko Ito, Isaho Kamata, Hidekazu Tsuchida, Hiroaki Fujibayashi, Hideyuki Uehigashi, Masami Naito, Kazukuni Hara, Hirofumi Aoki, Takahiro Kozawa
  • Publication number: 20210013238
    Abstract: An active matrix substrate includes a substrate; a plurality of gate bus lines and a plurality of source bus lines; an oxide semiconductor TFT that includes an oxide semiconductor layer, a gate insulating layer, and a gate electrode; a pixel electrode; and an upper insulating layer. The oxide semiconductor layer includes a high resistance region, and a first region and a second region. The high resistance region includes a channel region, a first channel offset region, and a second channel offset region. The upper insulating layer is disposed so as to overlap the channel region, the first channel offset region, and the second channel offset region, and so as not to overlap any of the first region and the second region, when viewed from the normal direction of the main surface of the substrate.
    Type: Application
    Filed: July 2, 2020
    Publication date: January 14, 2021
    Inventors: Masahiko SUZUKI, Yoshihito HARA, Tetsuo KIKUCHI, Setsuji NISHIMIYA, Kengo HARA, Masamitsu YAMANAKA, Hitoshi TAKAHATA, Hajime IMAI, Tohru DAITOH
  • Patent number: 10873717
    Abstract: One embodiment provides a communication device for transmitting a video to an external device through first to third transmission lines, the communication device including: a transmission module configured to transmit first color difference information and second color difference information concerned with adjacent two pixels through the first transmission line, to transmit first luminance information concerned with one of the two pixels through the second transmission line, and to transmit second luminance information concerned with the other of the two pixels through the third transmission line.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: December 22, 2020
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Nobuaki Suzuki, Makoto Sato, Masahiko Mawatari
  • Publication number: 20200393060
    Abstract: To enable accurate and simple diagnosis of an operation abnormality of a valve. A valve V1 capable of detecting an operation abnormality has a magnet M1 that is attached in the vicinity of a pressing adapter 52 of a stem 53 that slides according to an opening/closing operation of the valve V1, and a magnetic sensor M2 that is attached to a surface acing the stem 53, inside the pressing adapter 52 that presses a peripheral edge of a diaphragm 51, and detects a change in a distance between the magnet M1 and the magnetic sensor M2. Further, an abnormality determination mechanism compares the change in the distance between the magnet M1 and the magnetic sensor M2 at the time of abnormality diagnosis detected by the magnetic sensor M2 and a previously measured change in the distance between the magnet M and the magnetic sensor M2 at the time of normality, and determines whether or not there is an abnormality.
    Type: Application
    Filed: October 5, 2018
    Publication date: December 17, 2020
    Applicant: Fujikin Incorporated
    Inventors: Ryutaro Tanno, Kenji Aikawa, Akihiro Harada, Yuya Suzuki, Takahiro Matsuda, Katsunori Komehana, Masahiko Ochiishi, Tsutomu Shinohara
  • Publication number: 20200388637
    Abstract: An active matrix substrate includes a substrate, a plurality of oxide semiconductor TFTs, a plurality of gate bus lines, a plurality of source bus lines, and at least one trunk wiring provided in a non-display region and transmitting a signal, and a plurality of other wirings, each of which is disposed so as to at least partially overlap the trunk wirings. The active matrix substrate includes a first metal layer, a second metal layer disposed above the first metal layer, and a third metal layer disposed above the second metal layer on the substrate. One of the first, second, and third metal layers includes a source bus line, and other layer includes a gate bus line. The trunk wiring is formed in two metal layer of the first, second and third metal layers.
    Type: Application
    Filed: June 4, 2020
    Publication date: December 10, 2020
    Inventors: Tetsuo KIKUCHI, Tohru DAITOH, Hajime IMAI, Masahiko SUZUKI, Setsuji NISHIMIYA, Kengo HARA, Masamitsu YAMANAKA, Hitoshi TAKAHATA
  • Patent number: 10859299
    Abstract: An air-conditioning apparatus includes a refrigerant circuit, an indoor fan, a temperature sensor provided in an area adjacent to a seam in a refrigerant pipe of the refrigerant circuit, and a controller configured to determine the presence of refrigerant leakage on the basis of a decrease in the temperature measured by the temperature sensor. The controller is configured to determine the presence of refrigerant leakage while the indoor fan is stopped, and stop the determination of the presence of refrigerant leakage while a defrosting operation is performed.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: December 8, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kenyu Tanaka, Masahiko Takagi, Yasuhiro Suzuki
  • Publication number: 20200368098
    Abstract: A processing unit includes a direction decision unit and a guide information generation unit. The direction decision unit decides a direction in which a person who behaves without a sense of sight walks. The guide information generation unit generates guide information for the person who behaves without the sense of sight to walk in the decided direction. The present technology is applicable, for example, to a smartphone or the like used by the person who behaves without the sense of sight.
    Type: Application
    Filed: August 10, 2020
    Publication date: November 26, 2020
    Inventors: KUMI YASHIRO, TETSUYA NARUSE, JUNICHI KOSAKA, YASUMASA SUZUKI, HIROKO NISHIOKA, HITOSHI RIKUKAWA, KOHEI TAKADA, MASAHIKO SUZUKI
  • Publication number: 20200363826
    Abstract: To diagnose an abnormality of a fluid control device from an operation of an entire fluid supply line including a plurality of fluid control devices. Provided is an abnormality diagnosis method of a fluid supply line including a plurality of fluid control devices F, V1, and V2 communicating with each other fluid-tightly.
    Type: Application
    Filed: October 5, 2018
    Publication date: November 19, 2020
    Applicant: Fujikin Incorporated
    Inventors: Ryutaro Tanno, Kenji Aikawa, Akihiro Harada, Yuya Suzuki, Takahiro Matsuda, Katsunori Komehana, Masahiko Ochiishi, Tsutomu Shinohara
  • Patent number: 10823445
    Abstract: A refrigeration cycle apparatus according to the present invention, a controller is configured to cause a first operation mode and a second operation mode to be executed as operation modes of an air-sending fan. The first operation mode is an operation mode in which an operation of the air-sending fan is started based on a first manipulation performed on an operation unit and the air-sending fan is stopped based on a second manipulation performed on the operation unit. The second operation mode is an operation mode in which the operation of the air-sending fan is started when refrigerant is detected by a refrigerant detection unit, the air-sending fan is not stopped based on the second manipulation, the air-sending fan is stopped based on a third manipulation different from the second manipulation, and the operation of the air-sending fan is restarted based on a fourth manipulation different from the first manipulation.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: November 3, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yasuhiro Suzuki, Masahiko Takagi, Kenyu Tanaka, Kazuki Watanabe
  • Patent number: 10825843
    Abstract: Provided is an active matrix substrate (100A) including: a gate metal layer (15) that has a two-layer structure composed of a Cu layer (15b) and a Ti layer (15a); a first insulating layer (16) on the gate metal layer (15); a source metal layer (18) that is formed on the first insulating layer (16) and has a two-layer structure composed of a Cu layer (18b) and a Ti layer (18a); a second insulating layer (19) on the source metal layer (18); a conductive layer (25) that is formed on the second insulating layer (19), and is in contact with the gate metal layer (15) within a first opening (16a1) formed in the first insulating layer (16) and is in contact with the source metal layer (18) within a second opening (19a2) formed in the second insulating layer (19); and a first transparent conductive layer (21) that is formed on the conductive layer (25) and includes any of a pixel electrode, a common electrode and an auxiliary capacitor electrode.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: November 3, 2020
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Teruyuki Ueda, Hideki Kitagawa, Tohru Daitoh, Hajime Imai, Masahiko Suzuki, Setsuji Nishimiya, Tetsuo Kikuchi, Toshikatsu Itoh, Kengo Hara
  • Patent number: 10816865
    Abstract: Provided is an active matrix substrate provided with a substrate (1), a peripheral circuit that includes a first oxide semiconductor thin-film transistor (TFT) (101), a plurality of second oxide semiconductor TFTs (102) disposed in a display area, and a first inorganic insulating layer (11) covering the plurality of second oxide semiconductor TFTs (102), the first oxide semiconductor TFT (101) having a lower gate electrode (3A), a gate insulating layer (4), an oxide semiconductor (5A) disposed so as to face the lower gate electrode with the gate insulating layer interposed therebetween, a source electrode (7A) and a drain electrode (8A), and an upper gate electrode (BG) disposed on the oxide semiconductor (5A) with an insulating layer that includes the first inorganic insulating layer (11) interposed therebetween, and furthermore having, on the upper gate electrode (BG), a second inorganic insulating layer (17) covering the first oxide semiconductor TFT (101).
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: October 27, 2020
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Tetsuo Kikuchi, Tohru Daitoh, Hajime Imai, Toshikatsu Itoh, Hisao Ochi, Hideki Kitagawa, Masahiko Suzuki, Teruyuki Ueda, Ryosuke Gunji, Kengo Hara, Setsuji Nishimiya
  • Patent number: 10818766
    Abstract: An active matrix substrate according to an embodiment of the present invention includes a plurality of thin film transistors supported on a substrate and an inorganic insulating layer covering the plurality of thin film transistors. Each thin film transistor includes a gate electrode, an oxide semiconductor layer, a gate insulating layer, a source electrode, and a drain electrode. At least one of the gate insulating layer and the inorganic insulating layer is an insulating layer stack having a multilayer structure including a silicon oxide layer and a silicon nitride layer. The insulating layer stack further includes an intermediate layer disposed between the silicon oxide layer and the silicon nitride layer, the intermediate layer having a refractive index nC higher than a refractive index nA of the silicon oxide layer and lower than a refractive index nB of the silicon nitride layer.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: October 27, 2020
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Masahiko Suzuki, Hideki Kitagawa, Tetsuo Kikuchi, Toshikatsu Itoh, Setsuji Nishimiya, Teruyuki Ueda, Kengo Hara, Hajime Imai, Tohru Daitoh
  • Patent number: 10818697
    Abstract: A semiconductor device includes a first TFT, a first source-side connection section that is formed from a part of a second metal film and connected to a first source region, a first drain-side connection section that is formed from a part of the second metal film and connected to a first drain region, a second TFT that is driven by the first TFT, a second source-side connection section that is formed from a part of a first metal film and connected to a second source region, and a second drain-side connection section that is formed from a part of the first metal film or a second transparent electrode film and connected to a second drain region.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: October 27, 2020
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Masahiko Suzuki, Tohru Daitoh, Hajime Imai, Tetsuo Kikuchi, Setsuji Nishimiya, Teruyuki Ueda, Masamitsu Yamanaka, Kengo Hara
  • Patent number: 10808960
    Abstract: A refrigeration cycle apparatus includes a refrigeration cycle circuit which includes a plurality of load-side heat exchangers; a plurality of indoor units which accommodate the plurality of load-side heat exchangers, respectively; and a controller which controls the plurality of indoor units. Each of the plurality of indoor units includes an air-sending fan. At least one of the plurality of indoor units includes a refrigerant detection unit. The controller divides the plurality of indoor units into one or more groups. The controller is set such that when refrigerant is detected by the refrigerant detection unit included in any of the plurality of indoor units, the controller causes the air-sending fans included in all the indoor units which belong to a same group as the indoor unit which includes the refrigerant detection unit which detects the refrigerant to be operated.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: October 20, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yasuhiro Suzuki, Masahiko Takagi, Kenyu Tanaka, Kazuki Watanabe, Naoya Matsunaga, Teppei Higuchi
  • Publication number: 20200316878
    Abstract: A composite material lamination device laminates a composite material on a lamination surface, which is an outer surface of a mold that includes one side surface and another side surface, or an outer surface of a structure disposed on the outer surface of the mold. The composite material lamination device comprises: a first robot that is disposed on the one side surface side of the mold to laminate a portion of the composite material on a portion of the lamination surface; and a second robot disposed on the other side surface side of the mold to laminate the remaining portion of the composite material on the remaining portion of the lamination surface.
    Type: Application
    Filed: March 8, 2019
    Publication date: October 8, 2020
    Inventors: Akihito SUZUKI, Kazuki ISHIDA, Kohei MUTO, Masahiko SHIMIZU, Tsuyoshi OKAWARA, Kenji MURAKAMI
  • Patent number: D899573
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: October 20, 2020
    Assignee: OMRON HEALTHCAE Co., Ltd.
    Inventors: Tsuyoshi Ogihara, Masahiko Yumoto, Yukiko Mitsunami, Kengo Nishiyama, Kosuke Inoue, Tadashi Koike, Nobuhiko Osoegawa, Hiroyuki Shino, Takaaki Okanishi, Misaki Inaga, Yuka Tanioka, Katsumi Matsuda, Junji Kawamoto, Naoki Uchida, Yasuo Matsuda, Takahisa Suzuki, Takuya Togawa