Patents by Inventor Masahiro Imanishi

Masahiro Imanishi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130022892
    Abstract: A cathode catalyst layer (16) includes electron conducting carbon nanotubes (CNTs) (161) having a hollow space formed at an interior. The CNTs (161) are, in a hollow space forming direction thereof, open at a first end and are closed at a second end. The open end (161a) is disposed so as to be in contact with a gas diffusion layer (22). On the other hand, the closed end (161b) is disposed so as to be in contact with a polymer electrolyte membrane (12). Defects are formed on a surface of the CNTs (161). The defects (161c) are formed so as to communicate between an outer surface of the CNTs (161) and the hollow space. Catalyst particles (162) are provided on the outer surface of the CNTs (161), and an ionomer (163) is provided so as to cover the catalyst particles (162).
    Type: Application
    Filed: April 13, 2011
    Publication date: January 24, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigeki Hasegawa, Yoshihiro Shinozaki, Masahiro Imanishi, Seiji Sano
  • Publication number: 20130020280
    Abstract: A method of manufacturing a fuel cell includes: growing carbon nanotubes substantially perpendicular to a substrate formed by loading a growth catalyst on a base material; arranging the substrate and a polymer electrolyte membrane so as to oppose to each other and combining the carbon nanotubes with the polymer electrolyte membrane; and dissolving and removing part of the substrate by immersing the substrate in a solution which dissolves the substrate, after the carbon nanotubes and the polymer electrolyte membrane are combined.
    Type: Application
    Filed: April 12, 2011
    Publication date: January 24, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigeki Hasegawa, Yoshihiro Shinozaki, Masahiro Imanishi, Seiji Sano
  • Patent number: 8338056
    Abstract: A tubular fuel cell includes an inner current collector, a membrane-electrode assembly, and seal portions provided at the axial end portions of the membrane-electrode assembly, respectively. The membrane-electrode assembly includes an inner catalyst layer provided on the inner current collector, an electrolyte membrane provided on the inner catalyst layer, and an outer catalyst layer provided on the electrolyte membrane. The axial length of the outer catalyst layer is shorter than the axial lengths of the electrolyte membrane and the outer catalyst layer. The axial end face of the outer catalyst layer and the axial end face of the inner catalyst layer are located on the opposite sides of the seal portion in each side of the tubular fuel cell.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: December 25, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masahiro Imanishi, Haruyuki Nakanishi, Shigeaki Murata, Hirokazu Ishimaru, Yuichiro Hama, Yoshihisa Tamura
  • Patent number: 8283084
    Abstract: There is provided a hollow-shaped membrane electrode assembly for a fuel cell capable of improving power density per unit volume, wherein the hollow-shaped membrane electrode assembly for a fuel cell comprises a hollow solid electrolyte membrane, an outer electrode layer formed on the outer circumferential surface of the solid electrolyte membrane and an inner electrode layer formed on the inner circumferential surface of the solid electrolyte membrane, and wherein the hollow-shaped membrane electrode assembly for a fuel cell is formed in the shape of a spiral.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: October 9, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shigeaki Murata, Haruyuki Nakanishi, Masahiro Imanishi, Yoshihisa Tamura
  • Publication number: 20120045572
    Abstract: A substrate 10 that selectively allows hydrogen to permeate therethrough is formed with a catalyst thin layer 20 on a first side 11 thereof and is heated in a furnace tube 110, which functions as a reactor, of a heating furnace 100 while a raw material gas to the catalyst thin layer 20 is fed. Hydrogen produced on the first side 11 of the substrate 10 as a result of the formation of carbon nanotubes 5 is separated from the raw material gas and is allowed to permeate to a second side 12 thereof.
    Type: Application
    Filed: April 8, 2010
    Publication date: February 23, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masahiro Imanishi, Naoki Ito, Shigeaki Murata, Keisuke Nagasaka, Hiroyuki Kawai, Satoshi Nakazawa
  • Patent number: 8007691
    Abstract: A catalyst for electrodes in solid-polymer fuel cells which comprises metal oxide particles themselves. The catalyst contains fine transition-metal oxide particles having, in the main phase, a perovskite structure represented by the general formula ABO3 (wherein A represents one or more elements selected among lanthanum, strontium, cerium, calcium, yttrium, erbium, praseodymium, neodymium, samarium, europium, silicon, magnesium, barium, niobium, lead, bismuth, and antimony; and B represents one or more elements selected among iron, cobalt, manganese, copper, titanium, chromium, nickel, and molybdenum), the fine oxide particles having lattice constants satisfying the following relationship (1): 1.402<2b/(a+c)<1.422??(1) wherein a and c represent the minor-axis lengths of the perovskite type crystal lattice and b represents the major-axis length thereof.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: August 30, 2011
    Assignees: Hitachi Maxell Energy, Ltd., Toyota Jidosha Kabushiki Kaisha
    Inventors: Yuko Sawaki, Mikio Kishimoto, Haruyuki Nakanishi, Shigeaki Murata, Masahiro Imanishi, Shinichi Matsumoto
  • Patent number: 7838064
    Abstract: A method for manufacturing a tube-type fuel cell by which a tube-type fuel cell with good adhesion can be produced without blocking a gas flow channel in its inner current collector. The method for manufacturing a tube-type fuel cell may include a filling step of providing a columnar-shaped inner current collector having a gas flow channel on its outer peripheral face and filling the gas flow channel with a removable substance to form a removable portion. Also a functional layer forming step of forming a functional layer on at least the removable portion and a removing step of removing the removable portion after the functional layer forming step may be used.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: November 23, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Haruyuki Nakanishi, Shigeaki Murata, Masahiro Imanishi, Yoshihisa Tamura
  • Patent number: 7754366
    Abstract: A tubular fuel cell module is provided with a tubular cell of a tubular fuel cell, and a heat transfer pipe through which a heating/cooling medium flows to selectively heat and cool the tubular fuel cell. The heat transfer pipe includes a first straight portion, a second straight portion, and a bent portion that connects the first straight portion with the second straight portion. At least a portion of the tubular cell is arranged on at least one of the first straight portion and the second straight portion. As a result, the reliability of a seal of the tubular fuel cell module is improved.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: July 13, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Haruyuki Nakanishi, Shigeaki Murata, Masahiro Imanishi, Yoshihisa Tamura
  • Publication number: 20100151362
    Abstract: There are provided carbon particles supporting thereon fine particles of a perovskite type composite oxide, which can be used as a substitute for the existing platinum-supporting carbon particles or platinum metal particles commonly used in electrocatalysts for fuel cells, and which are significantly reduced in the amount of platinum to be used in comparison with the existing platinum-supporting carbon particles, and a process for manufacturing the same carbon particles. The fine particles of a perovskite type composite metal oxide which contains a noble metal element in its crystal lattice and has an average crystallite size of from 1 to 20 nm are supported on carbon particles.
    Type: Application
    Filed: September 25, 2006
    Publication date: June 17, 2010
    Inventors: Yuko Sawaki, Mikio Kishimoto, Haruyuki Nakanishi, Masahiro Imanishi
  • Patent number: 7641996
    Abstract: A fuel cell capable of improving heat exchange efficiency with respect to tubular fuel cells is provided. A fuel cell includes a hollow electrolyte membrane, hollow electrodes arranged on an inside and an outside of the electrolyte membrane, respectively, and an internal charge collector arranged inside of the electrolyte membrane and the electrodes, wherein the internal charge collector is hollow and made of a nonporous member.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: January 5, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masahiro Imanishi, Haruyuki Nakanishi, Shigeaki Murata, Yoshihisa Tamura
  • Publication number: 20090286130
    Abstract: The present invention mainly intends to provide a water-repellent layer-forming tape, which enables a water-repellent layer to be provided by a simple method. In order to achieve the object, the present invention provides a water-repellent layer-forming tape to be used for forming a water-repellent layer of a tube-type fuel cell, comprising a plurality of fibrous shape-retaining materials and a water-repellent portion formed to connect the plurality of fibrous shape-retaining materials, wherein the water-repellent portion contains a water-repellent material and an electro-conductive material.
    Type: Application
    Filed: August 30, 2006
    Publication date: November 19, 2009
    Inventors: Masahiro Imanishi, Haruyuki Nakanishi, Shigeaki Murata, Yoshihisa Tamura
  • Publication number: 20090253009
    Abstract: The present invention provides a fuel cell which is capable to improve heat exchange efficiency with a plurality of tubular cells. The fuel cell of the present invention comprises: a plurality of tubular cells; heat exchangers arranged at the outside of the tubular cells, wherein at least a part of the outer circumferential surface of said tubular cells and the peripheral surface of said heat exchangers have face contact with each other.
    Type: Application
    Filed: August 31, 2006
    Publication date: October 8, 2009
    Inventors: Haruyuki Nakanishi, Shigeaki Murata, Masahiro Imanishi, Yoshihisa Tamura
  • Publication number: 20090246602
    Abstract: There are provided fine particle-carrying carbon particles, which can be used as a substitute for the existing platinum-carrying carbon particles or platinum metal particles commonly used in electrocatalysts for fuel cells or the like, and which are significantly reduced in the amount of platinum to be used in comparison with the existing platinum-carrying carbon particles, and an electrode for a fuel cell using the same carbon particles. The fine particle-carrying carbon particle comprises a carbon particle with an average particle diameter of from 20 to 70 nm, and fine particles of a metal oxide with an average crystallite size of from 1 to 20 nm, carried on the carbon particle, wherein the metal oxide contains a noble metal element such as a platinum element, and is represented by the formula: MOx in which the metal element M is partially substituted by the noble metal element.
    Type: Application
    Filed: September 25, 2006
    Publication date: October 1, 2009
    Inventors: Yuko Sawaki, Yoshinori Sato, Mikio Kishimoto, Haruyuki Nakanishi, Masahiro Imanishi
  • Publication number: 20090200519
    Abstract: A catalyst for electrodes in solid-polymer fuel cells which comprises metal oxide particles themselves. It can be used as a substituent for the carbon particles having platinum deposited thereon and platinum metal particles which are presently in general use as, e.g., a catalyst for electrodes in fuel cells, and has a possibility that the amount of platinum to be used can be greatly reduced as compared with the conventional carbon particles having platinum deposited thereon, etc.
    Type: Application
    Filed: June 12, 2007
    Publication date: August 13, 2009
    Inventors: Yuko Sawaki, Mikio Kishimoto, Haruyuki Nakanishi, Shigeaki Murata, Masahiro Imanishi, Shinichi Matsumoto
  • Publication number: 20090202869
    Abstract: Carbon particles having fine particles deposited thereon which can be used as a substitute for the carbon particles having platinum deposited thereon and metallic platinum particles which are presently in general use as, e.g., a catalyst for electrodes in fuel cells. Compared to the conventional carbon particles having platinum deposited thereon, etc., the carbon particles are effective in greatly reducing the amount of platinum to be used. The carbon particles are characterized by comprising carbon particles and, deposited on the surface of the carbon particles, fine particles of a perovskite type composite metal oxide in each of which fine noble-metal particles are present throughout the whole particle. Also provided is a process for producing the carbon particles.
    Type: Application
    Filed: June 12, 2007
    Publication date: August 13, 2009
    Inventors: Yuko Sawaki, Mikio Kishimoto, Haruyuki Nakanishi, Shigeaki Murata, Masahiro Imanishi
  • Publication number: 20090162714
    Abstract: A tubular fuel cell module is provided with a tubular cell of a tubular fuel cell, and a heat transfer pipe through which a heating/cooling medium flows to selectively heat and cool the tubular fuel cell. The heat transfer pipe includes a first straight portion, a second straight portion, and a bent portion that connects the first straight portion with the second straight portion. At least a portion of the tubular cell is arranged on at least one of the first straight portion and the second straight portion. As a result, the reliability of a seal of the tubular fuel cell module is improved.
    Type: Application
    Filed: November 9, 2006
    Publication date: June 25, 2009
    Inventors: Haruyuki Nakanishi, Shigeaki Murata, Masahiro Imanishi, Yoshihisa Tamura
  • Publication number: 20090155659
    Abstract: A tubular fuel cell includes an inner current collector, a membrane-electrode assembly, and seal portions provided at the axial end portions of the membrane-electrode assembly, respectively. The membrane-electrode assembly includes an inner catalyst layer provided on the inner current collector, an electrolyte membrane provided on the inner catalyst layer, and an outer catalyst layer provided on the electrolyte membrane. The axial length of the outer catalyst layer is shorter than the axial lengths of the electrolyte membrane and the outer catalyst layer. The axial end face of the outer catalyst layer and the axial end face of the inner catalyst layer are located on the opposite sides of the seal portion in each side of the tubular fuel cell.
    Type: Application
    Filed: November 9, 2006
    Publication date: June 18, 2009
    Inventors: Masahiro Imanishi, Haruyuki Nakanishi, Shigeaki Murata, Hirokazu Ishimaru, Yuichiro Hama, Yoshihisa Tamura
  • Publication number: 20090148741
    Abstract: a fuel cell capable of improving heat exchange efficiency with respect to tubular fuel cells is provided. A fuel cell includes a hollow electrolyte membrane, hollow electrodes arranged on an inside and an outside of the electrolyte membrane, respectively, and an internal charge collector arranged inside of the electrolyte membrane and the electrodes, wherein the internal charge collector is hollow and made of a nonporous member.
    Type: Application
    Filed: August 31, 2006
    Publication date: June 11, 2009
    Inventors: Masahiro Imanishi, Haruyuki Nakanishi, Shigeaki Murata, Yoshihisa Tamura
  • Publication number: 20090136806
    Abstract: A tube shaped fuel cell module which includes a plurality of tube shaped fuel cell cells each of which has, in order from the inside, an internal collector, an inside catalyst electrode layer, a solid electrolyte membrane and an outside catalyst electrode layer; and an external collector which collects power from the tube shaped fuel cell cells, is such that the external collector has a corrugated plate structure in which convex portions and concave portions continuously alternate. The tube shaped fuel cell module is also provided with at least one cell-collector unit which includes the external collector, and the plurality of tube shaped fuel cell cells which contact the surface of the concave portions of the external collector along the entire lengths of the tube shaped fuel cell cells.
    Type: Application
    Filed: November 9, 2006
    Publication date: May 28, 2009
    Inventors: Masahiro Imanishi, Haruyukl Nakanishi, Shigeaki Murata, Yoshihisa Tamura
  • Publication number: 20090047422
    Abstract: The present invention mainly intends to provide a method for manufacturing a tube-type fuel cell by which a tube-type fuel cell with good adhesion can be produced without blocking gas flow channel in its inner current collector. In order to achieve the object, the present invention provides a method for manufacturing a tube-type fuel cell, comprising: a filling step of providing a columnar-shaped inner current collector having a gas flow channel on its outer peripheral face and filling the gas flow channel with a removable substance to form a removable portion; a functional layer forming step of forming a functional layer on at least the removable portion; and a removing step of removing the removable portion after the functional layer forming step.
    Type: Application
    Filed: August 30, 2006
    Publication date: February 19, 2009
    Inventors: Haruyuki Nakanishi, Shigeaki Murata, Masahiro Imanishi, Yoshihisa Tamura