Patents by Inventor Masanobu Iwaya

Masanobu Iwaya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10079298
    Abstract: A semiconductor device includes on an n-type semiconductor substrate of silicon carbide, an n-type semiconductor layer, a p-type base region, an n-type source region, a p-type contact region, a gate insulating film, a gate electrode, and a source electrode. The semiconductor device has a drain electrode on a back surface of the semiconductor substrate. On a surface of the gate electrode, an interlayer insulating film is disposed. The interlayer insulating film has plural layers among which, one layer is formed by a silicon nitride film. With such a structure, degradation of semiconductor device properties are suppressed. Further, increases in the number of processes at the time of manufacturing are suppressed.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: September 18, 2018
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Akimasa Kinoshita, Yasuyuki Hoshi, Yuichi Harada, Yoshiyuki Sakai, Masanobu Iwaya, Mina Ryo
  • Publication number: 20180197947
    Abstract: In a first main surface of a silicon carbide semiconductor base, a trench is formed. On a first main surface side of the silicon carbide semiconductor base, an n-type silicon carbide epitaxial layer is deposited. In a surface of the n-type silicon carbide epitaxial layer, an n-type high-concentration region is provided. In the surface of the n-type silicon carbide epitaxial layer, a first p-type base region and a second p+-type base region are selectively provided. The second p+-type base region is formed at the bottom of the trench. A depth of the n-type high-concentration region is deeper than that of the first p-type base region and the second p+-type base region. Thus, by an easy method, the electric field at a gate insulating film at the bottom of the trench is mitigated, enabling the breakdown voltage of the active region to be maintained and the ON resistance to be lowered.
    Type: Application
    Filed: March 1, 2018
    Publication date: July 12, 2018
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Masanobu Iwaya, Akimasa Kinoshita, Shinsuke Harada, Yasunori Tanaka
  • Publication number: 20180182891
    Abstract: An interlayer insulating film is formed on a gate insulating film and a gate electrode, and the interlayer insulating film is opened forming contact holes. Next, the interlayer insulating film and regions exposed by the contact holes are covered by a titanium nitride film, and the titanium nitride film is etched to remain only at portions of the gate insulating film and the interlayer insulating film exposed in the contact holes. The interlayer insulating film and the regions exposed by the contact holes are covered by a nickel film, and after the nickel film directly contacting the interlayer insulating film is removed, the nickel film is heat treated and a nickel silicide layer is formed.
    Type: Application
    Filed: February 20, 2018
    Publication date: June 28, 2018
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Masanobu IWAYA, Makoto UTSUMI
  • Patent number: 9997358
    Abstract: In a vertical MOSFET of a trench gate structure, a high-concentration implantation region is provided in a p-type base region formed from a p-type silicon carbide layer formed by epitaxial growth, so as to include a portion in which a channel is formed. The high-concentration implantation region is formed by ion implantation of a p-type impurity into the p-type silicon carbide layer. The high-concentration implantation region is formed by p-type ion implantation and has an impurity concentration profile in which concentration differences in a depth direction form a bell-shaped curve at a peak of impurity concentration that is higher than that of the p-type silicon carbide layer. In the p-type base region, disorder occurs partially in the crystal structure consequent to the ion implantation for forming the high-concentration implantation region.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: June 12, 2018
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Setsuko Wakimoto, Masanobu Iwaya
  • Publication number: 20180138288
    Abstract: A silicon carbide semiconductor element includes n-type silicon carbide epitaxial layers formed on an n+-type silicon carbide semiconductor substrate, plural p base layers selectively formed in surfaces of the silicon carbide epitaxial layers, a p-type silicon carbide epitaxial layer formed in the silicon carbide epitaxial layer, and a trench penetrating at least the silicon carbide epitaxial layer. The silicon carbide semiconductor element also includes, in a portion of the silicon carbide epitaxial layer, a mesa portion exposing the p base layer. The silicon carbide semiconductor element further includes, between consecutive mesa side faces of the mesa portion, a flat portion substantially parallel to the silicon carbide substrate. The remaining thickness of the exposed p base layer is larger than 0.5 ?m and smaller than 1.0 ?m.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 17, 2018
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Makoto UTSUMI, Yasuhiko OONISHI, Kenji FUKUDA, Shinsuke HARADA, Masanobu IWAYA
  • Patent number: 9911846
    Abstract: An interlayer insulating film is formed on a gate insulating film and a gate electrode, and the interlayer insulating film is opened forming contact holes. Next, the interlayer insulating film and regions exposed by the contact holes are covered by a titanium nitride film, and the titanium nitride film is etched to remain only at portions of the gate insulating film and the interlayer insulating film exposed in the contact holes. The interlayer insulating film and the regions exposed by the contact holes are covered by a nickel film, and after the nickel film directly contacting the interlayer insulating film 8 is removed, the nickel film is heat treated and a nickel silicide layer is formed.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: March 6, 2018
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Masanobu Iwaya, Makoto Utsumi
  • Publication number: 20180040688
    Abstract: A semiconductor device has an active region through which current flows and an edge termination structure region arranged outside the active region. The semiconductor device includes a low-concentration semiconductor layer of a first conductivity type, and formed in the edge termination structure region, on a front surface of a semiconductor substrate. The semiconductor device includes a second semiconductor layer of a second conductivity type, in contact with one of a semiconductor layer of the second conductivity type in the active region and a semiconductor layer of the second conductivity type in contact with a source electrode. The second semiconductor layer has an impurity concentration that is lower than that of the semiconductor layer, and the second semiconductor layer is not in contact with a surface of the semiconductor substrate.
    Type: Application
    Filed: July 26, 2017
    Publication date: February 8, 2018
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Yusuke KOBAYASHI, Yasuhiko Oonishi, Masanobu Iwaya
  • Patent number: 9887270
    Abstract: A silicon carbide semiconductor device includes an n+-type SiC substrate, a gate oxide film formed on a portion of the surface of the n+-type SiC substrate, a gate electrode formed on the gate oxide film, an interlayer insulating film formed so as to cover the gate electrode, a TiN film formed so as to cover the interlayer insulating film, and a Ni silicide layer formed on a surface of the n+-type SiC substrate not covered by the interlayer insulating film. The TiN film has two or more layers.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: February 6, 2018
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Masanobu Iwaya, Fumikazu Imai, Takuya Komatsu
  • Publication number: 20170271468
    Abstract: A silicon carbide semiconductor device includes an n+-type SiC substrate, a gate oxide film formed on a portion of the surface of the n+-type SiC substrate, a gate electrode formed on the gate oxide film, an interlayer insulating film formed so as to cover the gate electrode, a TiN film formed so as to cover the interlayer insulating film, and a Ni silicide layer formed on a surface of the n+-type SiC substrate not covered by the interlayer insulating film. The TiN film has two or more layers.
    Type: Application
    Filed: February 28, 2017
    Publication date: September 21, 2017
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Masanobu IWAYA, Fumikazu IMAI, Takuya KOMATSU
  • Publication number: 20170271509
    Abstract: An interlayer insulating film is formed on a gate insulating film and a gate electrode, and the interlayer insulating film is opened forming contact holes. Next, the interlayer insulating film and regions exposed by the contact holes are covered by a titanium nitride film, and the titanium nitride film is etched to remain only at portions of the gate insulating film and the interlayer insulating film exposed in the contact holes. The interlayer insulating film and the regions exposed by the contact holes are covered by a nickel film, and after the nickel film directly contacting the interlayer insulating film 8 is removed, the nickel film is heat treated and a nickel silicide layer is formed.
    Type: Application
    Filed: January 26, 2017
    Publication date: September 21, 2017
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Masanobu IWAYA, Makoto UTSUMI
  • Publication number: 20170221714
    Abstract: In a vertical MOSFET of a trench gate structure, a high-concentration implantation region is provided in a p-type base region formed from a p-type silicon carbide layer formed by epitaxial growth, so as to include a portion in which a channel is formed. The high-concentration implantation region is formed by ion implantation of a p-type impurity into the p-type silicon carbide layer. The high-concentration implantation region is formed by p-type ion implantation and has an impurity concentration profile in which concentration differences in a depth direction form a bell-shaped curve at a peak of impurity concentration that is higher than that of the p-type silicon carbide layer. In the p-type base region, disorder occurs partially in the crystal structure consequent to the ion implantation for forming the high-concentration implantation region.
    Type: Application
    Filed: December 30, 2016
    Publication date: August 3, 2017
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Setsuko WAKIMOTO, Masanobu IWAYA
  • Publication number: 20170222046
    Abstract: In a vertical MOSFET of a trench gate structure, a high-concentration implantation region is provided in a p-type base region formed from a p-type silicon carbide layer formed by epitaxial growth, so as to include a portion in which a channel is formed. The high-concentration implantation region is formed by ion implantation of a p-type impurity into the p-type silicon carbide layer. The high-concentration implantation region is formed by p-type ion implantation and has an impurity concentration profile in which concentration differences in a depth direction form a bell-shaped curve at a peak of impurity concentration that is higher than that of the p-type silicon carbide layer. In the p-type base region, disorder occurs partially in the crystal structure consequent to the ion implantation for forming the high-concentration implantation region.
    Type: Application
    Filed: January 3, 2017
    Publication date: August 3, 2017
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Setsuko WAKIMOTO, Masanobu IWAYA
  • Patent number: 9685333
    Abstract: A method of manufacturing a silicon carbide semiconductor device includes grinding a back surface of a semiconductor substrate formed of silicon carbide to reduce thickness thereof and provide an altered layer that is ground; removing by polishing or etching, the altered layer from the back surface; forming a nickel film on the back surface of the semiconductor substrate after removing the altered layer; heat treating the nickel film to forming a nickel silicide layer by silicidation; and forming a metal electrode on a surface of the nickel silicide layer.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: June 20, 2017
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Tsunehiro Nakajima, Masanobu Iwaya, Fumikazu Imai
  • Publication number: 20160315186
    Abstract: A semiconductor device includes on an n-type semiconductor substrate of silicon carbide, an n-type semiconductor layer, a p-type base region, an n-type source region, a p-type contact region, a gate insulating film, a gate electrode, and a source electrode. The semiconductor device has a drain electrode on a back surface of the semiconductor substrate. On a surface of the gate electrode, an interlayer insulating film is disposed. The interlayer insulating film has plural layers among which, one layer is formed by a silicon nitride film. With such a structure, degradation of semiconductor device properties are suppressed. Further, increases in the number of processes at the time of manufacturing are suppressed.
    Type: Application
    Filed: July 1, 2016
    Publication date: October 27, 2016
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Akimasa KINOSHITA, Yasuyuki HOSHI, Yuichi HARADA, Yoshiyuki SAKAI, Masanobu IWAYA, Mina RYO
  • Publication number: 20160155640
    Abstract: A method of manufacturing a silicon carbide semiconductor device includes grinding a back surface of a semiconductor substrate formed of silicon carbide to reduce thickness thereof and provide an altered layer that is ground; removing by polishing or etching, the altered layer from the back surface; forming a nickel film on the back surface of the semiconductor substrate after removing the altered layer; heat treating the nickel film to forming a nickel silicide layer by silicidation; and forming a metal electrode on a surface of the nickel silicide layer.
    Type: Application
    Filed: February 5, 2016
    Publication date: June 2, 2016
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Tsunehiro NAKAJIMA, Masanobu IWAYA, Fumikazu IMAI
  • Patent number: 7947600
    Abstract: A micro-transformer manufacturing method is provided, which can improve throughput, prevent a crack from entering an insulating film between coils, and manufacture the micro-transformer without using a mask material having a high selection ratio. An insulating film is deposited on the whole face of a semiconductor substrate having an impurity-diffused region. This insulating film is partially removed to form a first opening and a second opening. A primary coil is formed such that a center pad contacts the impurity-diffused region through the first opening. A thin insulating film is deposited on the primary coil. An insulator material having a secondary coil formed thereon is adhered onto the insulating film on the primary coil by adhesive tape. The insulator material is sized to not cover both a pad, connected with the center pad of the primary coil through the impurity-diffused region, and an outer-end pad of the primary coil.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: May 24, 2011
    Assignee: Fuji Electric Systems Co., Ltd.
    Inventors: Masanobu Iwaya, Reiko Hiruta, Katsunori Ueno, Kunio Mochizuki
  • Publication number: 20090280646
    Abstract: A micro-transformer manufacturing method is provided, which can improve throughput, prevent a crack from entering an insulating film between coils, and manufacture the micro-transformer without using a mask material having a high selection ratio. An insulating film is deposited on the whole face of a semiconductor substrate having an impurity-diffused region. This insulating film is partially removed to form a first opening and a second opening. A primary coil is formed such that a center pad contacts the impurity-diffused region through the first opening. A thin insulating film is deposited on the primary coil. An insulator material having a secondary coil formed thereon is adhered onto the insulating film on the primary coil by adhesive tape. The insulator material is sized to not cover both a pad, connected with the center pad of the primary coil through the impurity-diffused region, and an outer-end pad of the primary coil.
    Type: Application
    Filed: April 24, 2008
    Publication date: November 12, 2009
    Applicant: FUJI ELECTRIC DEVICE TECHNOLOGY CO., LTD.
    Inventors: Masanobu IWAYA, Reiko HIRUTA, Katsunori UENO, Kunio MOCHIZUKI