Patents by Inventor Masanori Aoyagi

Masanori Aoyagi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11400819
    Abstract: Provided is a hybrid electric vehicle in which, in accordance with the system side of the vehicle including a fuel economy-emphasized system, a wide use-range of the SOC of a lithium ion secondary battery cell can be utilized.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: August 2, 2022
    Assignee: Envision AESC Japan Ltd.
    Inventors: Kenji Ohara, Shin Tanaka, Fumihiro Kawamura, Masanori Aoyagi, Junko Nishiyama
  • Patent number: 10756342
    Abstract: A lithium ion secondary battery includes: a negative electrode having a carbon-based negative electrode material containing graphite particles and amorphous carbon particles; and a positive electrode including a lithium composite oxide. The lithium composite oxide is represented by a general formula: LixNiyMnzCo(1-y-z)O2, where x is a numeral of 1 or more and 1.2 or less, and y and z are positive numerals satisfying the relation of y+z<1. The lithium composite oxide has a layer crystal structure and has a median particle diameter (D50) of 4.0 ?m or more and less than 6.0 ?m.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: August 25, 2020
    Assignee: ENVISION AESC JAPAN LTD.
    Inventors: Sohei Suga, Koichi Shinohara, Kenji Ohara, Toshihiro Horiuchi, Masanori Aoyagi, Junko Nishiyama
  • Patent number: 10714787
    Abstract: Provided is a lithium ion secondary battery including a power generating element that includes at least one positive electrode plate, at least one negative electrode plate, and at least one separator. A ratio B/A (m?cm) of volume resistivity B (m?cm3) of the power generating element to an area A (cm2) per one positive electrode plate is 0.4 or more and less than 0.9.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: July 14, 2020
    Assignee: ENVISION AESC JAPAN LTD.
    Inventors: Sohei Suga, Koichi Shinohara, Kenji Ohara, Toshihiro Horiuchi, Masanori Aoyagi, Junko Nishiyama
  • Patent number: 10468729
    Abstract: A method for producing a non-aqueous electrolyte secondary battery including an electrolyte containing an electrolyte salt, a non-aqueous solvent capable of dissolving the electrolyte salt, and plural additives, wherein at least one of the additives has a reduction potential that is nobler than the reduction potential of the non-aqueous solvent. The method includes a first charging step for maintaining battery voltage at a negative electrode potential at which the additive having the noblest reduction potential of the additives is decomposed while the non-aqueous solvent and other additives are not reduced and decomposed and a second charging step for maintaining battery voltage so as to have reduction and decomposition of at least one of the non-aqueous solvents and bring the electrical potential of the negative electrode to at least 0.7 V relative to lithium. By having a uniform reaction in an electrode, a decrease in durability is suppressed.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: November 5, 2019
    Assignee: Envision AESC Japan Ltd.
    Inventors: Yuki Kusachi, Fumihiro Kawamura, Masanori Aoyagi, Kousuke Hagiyama
  • Patent number: 10283774
    Abstract: A bipolar electrode is composed of a first active material layer which is, for example, a positive electrode active material layer formed to include a first active material on one side of a collector, and a second active material layer which is, for example, a negative electrode active material layer formed to include a second active material with less compressive strength than that of the first active material on the other side of the collector. Then, a density adjusting additive which is an additive material with larger compressive strength than that of the second active material is included in the second active material layer.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: May 7, 2019
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Masanobu Sato, Yasuo Ohta, Hideaki Horie, Masanori Aoyagi
  • Patent number: 10270127
    Abstract: A nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode having a negative electrode active material, and a separator containing an electrolyte. The electrolyte includes an electrolyte salt, a nonaqueous solvent into which the electrolyte salt can be dissolved, a first additive selected from predetermined oxalate compounds and disulfonic acid ester compounds, and a second additive that has a reduction potential less than the reduction potential of the first additive. The second additive is selected from a group having vinylene carbonate, fluoroethylene carbonate, vinyl ethylene carbonate, 1, 3-propane sultone, 1, 4-butane sultone, 1, 3-propene sultone, succinonitrile, and adiponitrile.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: April 23, 2019
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kenji Ohara, Norihisa Waki, Yoshiaki Nitta, Masanori Aoyagi
  • Publication number: 20190084399
    Abstract: Provided is a hybrid electric vehicle in which, in accordance with the system side of the vehicle including a fuel economy-emphasized system, a wide use-range of the SOC of a lithium ion secondary battery cell can be utilized.
    Type: Application
    Filed: December 9, 2016
    Publication date: March 21, 2019
    Applicant: Automotive Energy Supply Corporation
    Inventors: Kenji Ohara, Shin Tanaka, Fumihiro Kawamura, Masanori Aoyagi, Junko Nishiyama
  • Patent number: 10147949
    Abstract: A negative electrode material for a lithium ion battery according to an embodiment of the present disclosure includes graphite particles and amorphous carbon particles. The graphite particles have a median diameter (D50) A of 8.0 ?m or more and 11.0 ?m or less. A ratio A/B of the median diameter A (?m) to a median diameter (D50) B (?m) of the amorphous carbon particles satisfies a relation of 1.1<(A/B)?2.75.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: December 4, 2018
    Assignee: Automotive Energy Supply Corporation
    Inventors: Sohei Suga, Koichi Shinohara, Kenji Ohara, Toshihiro Horiuchi, Masanori Aoyagi, Junko Nishiyama
  • Publication number: 20180241075
    Abstract: A lithium-ion secondary battery includes an electricity generation element including a cathode including a cathode active material layer arranged on a cathode current collector, an anode including an anode active material layer arranged on an anode current collector, a separator, and an electrolyte. The anode active material layer includes graphite. When the battery is charged to 5 V, the battery has an excess ratio of 1 or higher that is a ratio of a specific capacity of the cathode to a specific capacity of the anode, and the separator has a thermal shrinkage of 13% or lower. The lithium-ion secondary battery prevents heat generation in an overcharge state and maintains safety.
    Type: Application
    Filed: July 15, 2016
    Publication date: August 23, 2018
    Applicant: Automotive Energy Supply Corporation
    Inventors: Kenji Ohara, Sohei Suga, Koichi Shinohara, Toshihiro Horiuchi, Masanori Aoyagi, Junko Nishiyama
  • Patent number: 10033033
    Abstract: A non-aqueous electrolyte secondary battery has the internal resistance of 10 m?/Ah or less (SOC of 50%) and has a power generating element containing the following: a positive electrode obtained by forming, on the surface of a positive electrode current collector, a positive electrode active substance layer containing a positive electrode active substance; a negative electrode obtained by forming, on the surface of a negative electrode current collector, a negative electrode active substance layer containing a negative electrode active substance; and a separator. The positive electrode active substance is made to contain a spinel type lithium manganese composite oxide and a lithium nickel-based composite oxide, and the mixing ratio of the lithium nickel-based composite oxide is 50 to 70% by weight relative to the total 100% by weight of the spinel type lithium manganese composite oxide and the lithium nickel-based composite oxide.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: July 24, 2018
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kenji Ohara, Yoshiaki Nitta, Gentaro Kano, Tomoya Kubota, Masanori Aoyagi
  • Patent number: 10026988
    Abstract: Provided is a lithium ion secondary battery including a power generation element, the power generation element including a positive electrode, a negative electrode, a separator, and an electrolyte solution, the positive electrode including a positive electrode current collector, and a positive electrode active material layer provided for the positive electrode current collector, the positive electrode active material layer including a positive electrode active material and binder, the negative electrode including a negative electrode current collector and a negative electrode active material layer provided for the negative electrode current collector, the negative electrode active material layer including a negative electrode active material and binder. The positive electrode has a volume resistivity in a range of 100 ?cm or more and 700 ?cm or less after at least one charging and discharging cycle.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: July 17, 2018
    Assignee: AUTOMOTIVE ENERGY SUPPLY CORPORATION
    Inventors: Sohei Suga, Koichi Shinohara, Kenji Ohara, Toshihiro Horiuchi, Masanori Aoyagi, Junko Nishiyama
  • Publication number: 20180191027
    Abstract: A nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode having a negative electrode active material, and a separator containing an electrolyte. The electrolyte includes an electrolyte salt, a nonaqueous solvent into which the electrolyte salt can be dissolved, a first additive selected from predetermined oxalate compounds and disulfonic acid ester compounds, and a second additive that has a reduction potential less than the reduction potential of the first additive. The second additive is selected from a group having vinylene carbonate, fluoroethylene carbonate, vinyl ethylene carbonate, 1, 3-propane sultone, 1, 4-butane sultone, 1, 3-propene sultone, succinonitrile, and adiponitrile.
    Type: Application
    Filed: July 9, 2015
    Publication date: July 5, 2018
    Inventors: Kenji OHARA, Norihisa WAKI, Yoshiaki NITTA, Masanori AOYAGI
  • Patent number: 9972860
    Abstract: A bipolar electrode includes a collector; a positive electrode active material layer disposed on one surface of the collector; and a negative electrode active material layer disposed on the other surface of the collector. The quotient of the volume resistance of the collector and that of the positive and negative electrode active material layers is between 10?3 and 104. The bipolar electrode further includes a current distribution relaxation layer having a volume resistivity lower than that of either the positive electrode active material layer or the negative electrode active material layer. At least one active material layer having a volume resistivity larger than that of the current distribution relaxation layer is disposed between the current distribution relaxation layer and the collector.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: May 15, 2018
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kazuki Miyatake, Yoshio Shimoida, Masanori Aoyagi
  • Patent number: 9899674
    Abstract: [Object] Provided is a means which is capable, with respect to a non-aqueous electrolyte secondary battery, of suppressing a decrease in capacity when the battery is used for a long period of time, and improving cycle characteristics. [Solving Means] Provided is a positive electrode active substance for a non-aqueous electrolyte secondary battery, the positive electrode active substance being a lithium-nickel-manganese-cobalt composite oxide and having true density of 4.40 to 4.80 g/cm3.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: February 20, 2018
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Tamaki Hirai, Manabu Kaseda, Osamu Shimamura, Kenji Ohara, Kousuke Hagiyama, Fumihiro Kawamura, Masanori Aoyagi
  • Patent number: 9496742
    Abstract: A control device of a secondary battery has a current detection unit (103) that detects a charge current to the secondary battery (101) and a discharge current from the secondary battery (101); a calculation unit (107) that calculates, from the charge current and the discharge current, a charge-discharge efficiency and a discharge-charge efficiency when performing a charge operation and a discharge operation; a deterioration judgment unit (107) that judges a deterioration state of the secondary battery (101) from a temporal change rate of the charge-discharge efficiency and a temporal change rate of the discharge-charge efficiency; and a control unit (107) that sets a charge termination voltage of the secondary battery (101) in accordance with the deterioration state.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: November 15, 2016
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Sohei Suga, Tamaki Miura, Yosuke Suzuki, Shinsaku Ehara, Yoshiaki Nitta, Masanori Aoyagi, Takayuki Matsuoka
  • Publication number: 20160329613
    Abstract: A method for producing a non-aqueous electrolyte secondary battery including an electrolyte containing an electrolyte salt, a non-aqueous solvent capable of dissolving the electrolyte salt, and plural additives, wherein at least one of the additives has a reduction potential that is nobler than the reduction potential of the non-aqueous solvent. The method includes a first charging step for maintaining battery voltage at a negative electrode potential at which the additive having the noblest reduction potential of the additives is decomposed while the non-aqueous solvent and other additives are not reduced and decomposed and a second charging step for maintaining battery voltage so as to have reduction and decomposition of at least one of the non-aqueous solvents and bring the electrical potential of the negative electrode to at least 0.7 V relative to lithium. By having a uniform reaction in an electrode, a decrease in durability is suppressed.
    Type: Application
    Filed: December 8, 2014
    Publication date: November 10, 2016
    Inventors: Yuki Kusachi, Fumihiro Kawamura, Masanori Aoyagi, Kousuke Hagiyama
  • Publication number: 20160294001
    Abstract: Provided is a lithium ion secondary battery including a power generation element, the power generation element including a positive electrode, a negative electrode, a separator, and an electrolyte solution, the positive electrode including a positive electrode current collector, and a positive electrode active material layer provided for the positive electrode current collector, the positive electrode active material layer including a positive electrode active material and binder, the negative electrode including a negative electrode current collector and a negative electrode active material layer provided for the negative electrode current collector, the negative electrode active material layer including a negative electrode active material and binder. The positive electrode has a volume resistivity in a range of 100 ?cm or more and 700 ?cm or less after at least one charging and discharging cycle.
    Type: Application
    Filed: March 29, 2016
    Publication date: October 6, 2016
    Applicant: Automotive Energy Supply Corporation
    Inventors: Sohei SUGA, Koichi SHINOHARA, Kenji OHARA, Toshihiro HORIUCHI, Masanori AOYAGI, Junko NISHIYAMA
  • Publication number: 20160248116
    Abstract: Provided is a lithium ion secondary battery including a power generating element that includes at least one positive electrode plate, at least one negative electrode plate, and at least one separator. A ratio B/A (m?cm) of volume resistivity B (m?cm3) of the power generating element to an area A (cm2) per one positive electrode plate is 0.4 or more and less than 0.9.
    Type: Application
    Filed: February 17, 2016
    Publication date: August 25, 2016
    Applicant: Automotive Energy Supply Corporation
    Inventors: Sohei SUGA, Koichi SHINOHARA, Kenji OHARA, Toshihiro HORIUCHI, Masanori AOYAGI, Junko NISHIYAMA
  • Publication number: 20160190549
    Abstract: A non-aqueous electrolyte secondary battery has the internal resistance of 10 ?/Ah or less (SOC of 50%) and has a power generating element containing the following: a positive electrode obtained by forming, on the surface of a positive electrode current collector, a positive electrode active substance layer containing a positive electrode active substance; a negative electrode obtained by forming, on the surface of a negative electrode current collector, a negative electrode active substance layer containing a negative electrode active substance; and a separator. The positive electrode active substance is made to contain a spinel type lithium manganese composite oxide and a lithium nickel-based composite oxide, and the mixing ratio of the lithium nickel-based composite oxide is 50 to 70% by weight relative to the total 100% by weight of the spinel type lithium manganese composite oxide and the lithium nickel-based composite oxide.
    Type: Application
    Filed: April 23, 2014
    Publication date: June 30, 2016
    Inventors: Kenji OHARA, Yoshiaki NITTA, Gentaro KANO, Tomoya KUBOTA, Masanori AOYAGI
  • Publication number: 20160181606
    Abstract: A lithium ion secondary battery includes: a negative electrode having a carbon-based negative electrode material containing graphite particles and amorphous carbon particles; and a positive electrode including a lithium composite oxide. The lithium composite oxide is represented by a general formula: LixNiyMnzCo(1?y?z)O2, where x is a numeral of 1 or more and 1.2 or less, and y and z are positive numerals satisfying the relation of y+z<1. The lithium composite oxide has a layer crystal structure and has a median particle diameter (D50) of 4.0 ?m or more and less than 6.0 ?m.
    Type: Application
    Filed: December 11, 2015
    Publication date: June 23, 2016
    Applicant: Automotive Energy Supply Corporation
    Inventors: Sohei SUGA, Koichi SHINOHARA, Kenji OHARA, Toshihiro HORIUCHI, Masanori AOYAGI, Junko NISHIYAMA