Patents by Inventor Masaru Ushio

Masaru Ushio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11446645
    Abstract: A fluid catalytic cracking catalyst composition (FCC catalyst composition) includes a framework-substituted ultra-stable Y-type zeolite (USY zeolite) having one or more transition metals substituted into the framework of a USY zeolite and a FCC zeolite cracking additive. A method for upgrading a hydrocarbon feed includes contacting the hydrocarbon feed with the FCC catalyst composition of the present disclosure at reaction conditions sufficient to upgrade at least a portion of the hydrocarbon feed. A method for upgrading a hydrocarbon feed includes passing the hydrocarbon feed to a fluid catalytic cracking unit, contacting the hydrocarbon feed with a FCC catalyst composition in the fluid catalytic cracking unit under reaction conditions sufficient to cause at least a portion of the hydrocarbon feed to undergo cracking reactions to produce a cracking reaction mixture comprising a used FCC catalyst composition and a cracked effluent comprising one or more olefins.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: September 20, 2022
    Assignees: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center Petroleum
    Inventors: Omer Refa Koseoglu, Yaming Jin, Masaru Ushio, Seiji Arakawa
  • Publication number: 20220001362
    Abstract: A fluid catalytic cracking catalyst composition (FCC catalyst composition) includes a framework-substituted ultra-stable Y-type zeolite (USY zeolite) having one or more transition metals substituted into the framework of a USY zeolite and a FCC zeolite cracking additive. A method for upgrading a hydrocarbon feed includes contacting the hydrocarbon feed with the FCC catalyst composition of the present disclosure at reaction conditions sufficient to upgrade at least a portion of the hydrocarbon feed. A method for upgrading a hydrocarbon feed includes passing the hydrocarbon feed to a fluid catalytic cracking unit, contacting the hydrocarbon feed with a FCC catalyst composition in the fluid catalytic cracking unit under reaction conditions sufficient to cause at least a portion of the hydrocarbon feed to undergo cracking reactions to produce a cracking reaction mixture comprising a used FCC catalyst composition and a cracked effluent comprising one or more olefins.
    Type: Application
    Filed: July 2, 2020
    Publication date: January 6, 2022
    Applicants: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center Petroleum
    Inventors: Omer Refa Koseoglu, Yaming Jin, Masaru Ushio, Seiji Arakawa
  • Patent number: 10563138
    Abstract: The invention relates to a method for optimizing layered catalytic processes. This is accomplished by testing various catalysts with a compound found in a feedstock to be tested, to determine the facility of the catalyst in hydrogenating, hydrosulfurizing, or hydrodenitrogenating the molecule, and hence the feedstock. In a preferred embodiment, the Double Bond Equivalence of the feedstock and molecule are determined, and catalysts are pre-selected based upon their known ability to work with materials of this DBE value. In preferred embodiments, the layered catalysts include a demetallization catalyst, used before hydrocracking. In additional preferred embodiments, the test feedstock contains 500 ppmw or less asphaltenes, preferably C5-asphaltenes.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: February 18, 2020
    Assignees: SAUDI ARABIAN OIL COMPANY, JGC CATALYSTS AND CHEMICALS LTD., JAPAN COOPERATION CENTER PETROLEUM
    Inventors: Omer Refa Koseoglu, Adnan Al-Hajji, Hendrik Muller, Masaru Ushio, Koji Nakano
  • Patent number: 10357761
    Abstract: The present invention relates to a catalyst for fluidized catalytic cracking of hydrocarbon oil containing a framework-substituted zeolite-1 in which zirconium atoms and/or hafnium atoms form a part of a framework of an ultra-stable Y-type zeolite.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: July 23, 2019
    Assignees: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center PEtroleum
    Inventors: Omer Refa Koseoglu, Bandar Hussain Alsolami, Masaru Ushio, Seiji Arakawa
  • Patent number: 10293332
    Abstract: The present invention relates to a hydrocracking catalyst for hydrocarbon oil comprising a support containing a framework-substituted zeolite-1 in which zirconium atoms and/or hafnium atoms form a part of a framework of an ultrastable y-type zeolite and a hydrogenative metal component carried thereon and a method for producing the same. The hydrocracking catalyst of the present invention makes it easy to diffuse heavy hydrocarbon oils such as VGO, DAO and the like into mesopores, is improved in a cracking activity and makes it possible to obtain a middle distillate at a high yield as compared with catalysts prepared by using zeolite comprising titanium and/or zirconium carried thereon.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: May 21, 2019
    Assignees: Saudi Arabian Oil Company, JGC Catalyst and Chemicals Ltd., Japan Cooperation Center, Petroleum
    Inventors: Omer Refa Koseoglu, Adnan Al-Hajji, Ali Mahmoud Al-Somali, Ali H. Al-Abdul'Al, Mishaal Al-Thukair, Masaru Ushio, Ryuzo Kuroda, Takashi Kameoka, Koji Nakano, Yuichi Takamori
  • Publication number: 20190022630
    Abstract: The present invention relates to a hydrocracking catalyst for hydrocarbon oil comprising a support containing a framework-substituted zeolite-1 in which zirconium atoms and/or hafnium atoms form a part of a framework of an ultrastable y-type zeolite and a hydrogenative metal component carried thereon and a method for producing the same. The hydrocracking catalyst of the present invention makes it easy to diffuse heavy hydrocarbon oils such as VGO, DAO and the like into mesopores, is improved in a cracking activity and makes it possible to obtain a middle distillate at a high yield as compared with catalysts prepared by using zeolite comprising titanium and/or zirconium carried thereon.
    Type: Application
    Filed: September 25, 2018
    Publication date: January 24, 2019
    Inventors: Omer Refa KOSEOGLU, Adnan AL-HAJJI, Ali Mahmoud AL-SOMALI, Ali H. AL-ABDUL'AL, Mishaal AI-THUKAIR, Masaru USHIO, Ryuzo KURODA, Takashi KAMEOKA, Koji NAKANO, Yuichi TAKAMORI
  • Patent number: 10081009
    Abstract: The present invention relates to a hydrocracking catalyst for hydrocarbon oil comprising a support containing a framework-substituted zeolite-1 in which zirconium atoms and/or hafnium atoms form a part of a framework of an ultrastable y-type zeolite and a hydrogenative metal component carried thereon and a method for producing the same. The hydrocracking catalyst of the present invention makes it easy to diffuse heavy hydrocarbon oils such as VGO, DAO and the like into mesopores, is improved in a cracking activity and makes it possible to obtain a middle distillate at a high yield as compared with catalysts prepared by using zeolite comprising titanium and/or zirconium carried thereon.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: September 25, 2018
    Assignees: Saudi Arabian Oil Company, JGC Catalyst and Chemical Ltd., Japan Cooperation Center Petroleum
    Inventors: Omer Refa Koseoglu, Adnan Al-Hajji, Ali Mahmoud Al-Somali, Ali H. Al-Abdul'al, Mishaal Al-Thukair, Masaru Ushio, Ryuzo Kuroda, Takashi Kameoka, Koji Nakano, Yuichi Takamori
  • Publication number: 20180171243
    Abstract: The invention relates to a method for optimizing layered catalytic processes. This is accomplished by testing various catalysts with a compound found in a feedstock to be tested, to determine the facility of the catalyst in hydrogenating, hydrosulfurizing, or hydrodenitrogenating the molecule, and hence the feedstock. In a preferred embodiment, the Double Bond Equivalence of the feedstock and molecule are determined, and catalysts are pre-selected based upon their known ability to work with materials of this DBE value. In preferred embodiments, the layered catalysts include a demetallization catalyst, used before hydrocracking. In additional preferred embodiments, the test feedstock contains 500 ppmw or less asphaltenes, preferably C5-asphaltenes.
    Type: Application
    Filed: November 10, 2017
    Publication date: June 21, 2018
    Inventors: Omer Refa KOSEOGLU, Adnan Al-Hajji, Hendrik Muller, Masaru Ushio, Koji Nakano
  • Patent number: 9803148
    Abstract: In a hydrocracking process, the product from the first stage reactor passes through a steam stripper to remove hydrogen, H2S, NH3, light gases (C1-C4), naphtha and diesel products. The stripper bottoms are separated from hydrogen, H2S, NH3, light gases (C1-C4), naphtha, and diesel products and treated in a second stage reactor. The effluent stream from the second stage reactor, along with the stream of separated hydrogen, H2S, NH3, light gases (C1-C4), naphtha, and diesel products, are passed to a separation stage for separating petroleum fractions. Preferably, the effluent stream from the first stage reactor is passed through a steam generator prior to the steam stripping step. In an alternate embodiment, the effluent stream from the first stage reactor is passed through a vapor/liquid separator stripper vessel prior to the steam stripping step.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: October 31, 2017
    Assignees: Saudi Arabian Oil Company, Japan Cooperation Center, Petroleum, JGC Catalysts and Chemicals Ltd.
    Inventors: Omer Refa Koseoglu, Ali H. Al-Abdul'al, Masaru Ushio, Koji Nakano
  • Publication number: 20160244680
    Abstract: The invention relates to a method for optimizing layered catalytic processes. This is accomplished by testing various catalysts with a compound found in a feedstock to be tested, to determine the facility of the catalyst in hydrogenating, hydrosulfurizing, or hydrodenitrogenating the molecule, and hence the feedstock. in a preferred embodiment, the Double Bond Equivalence of the feedstock and molecule are determined, and catalysts are pre-selected based upon their known ability to work with materials of this DBE value.
    Type: Application
    Filed: May 3, 2016
    Publication date: August 25, 2016
    Inventors: Omer Refa KOSEOGLU, Adnan AL-HAJJI, Hendrik MULLER, Masaru USHIO, Koji NAKANO
  • Patent number: 9347006
    Abstract: The invention relates to a method for optimizing layered catalytic processes. This is accomplished by testing various catalysts with a compound found in a feedstock to be tested, to determine the facility of the catalyst in hydrogenating, hydrosulfurizing, or hydrodenitrogenating the molecule, and hence the feedstock. In a preferred embodiment, the Double Bond Equivalence of the feedstock and molecule are determined, and catalysts are pre-selected based upon their known ability to work with materials of this DBE value.
    Type: Grant
    Filed: January 7, 2014
    Date of Patent: May 24, 2016
    Assignees: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center, Petroleum
    Inventors: Omer Refa Koseoglu, Adnan Al-Hajji, Hendrik Muller, Masaru Ushio, Koji Nakano
  • Publication number: 20160051972
    Abstract: The present invention relates to a hydrocracking catalyst for hydrocarbon oil comprising a support containing a framework-substituted zeolite-1 in which zirconium atoms and/or hafnium atoms form a part of a framework of an ultrastable y-type zeolite and a hydrogenative metal component carried thereon and a method for producing the same. The hydrocracking catalyst of the present invention makes it easy to diffuse heavy hydrocarbon oils such as VGO, DAO and the like into mesopores, is improved in a cracking activity and makes it possible to obtain a middle distillate at a high yield as compared with catalysts prepared by using zeolite comprising titanium and/or zirconium carried thereon.
    Type: Application
    Filed: November 3, 2015
    Publication date: February 25, 2016
    Inventors: Omer Refa KOSEOGLU, Adnan Al-Hajji, Mahmood Ali Al-Somali, Ali H. Al-Abdul'al, Mishaal Al-Thukair, Masaru Ushio, Ryuzo Kuroda, Takashi Kameoka, Kouji Nakano, Yuuichi Takamori
  • Publication number: 20150375218
    Abstract: The present invention relates to a catalyst for fluidized catalytic cracking of hydrocarbon oil containing a framework-substituted zeolite-1 in which zirconium atoms and/or hafnium atoms form a part of a framework of an ultra-stable Y-type zeolite.
    Type: Application
    Filed: May 22, 2015
    Publication date: December 31, 2015
    Inventors: Omer Refa KOSEOGLU, Bandar Hussain ALSOLAMI, Masaru USHIO, Seiji ARAKAWA
  • Patent number: 9221036
    Abstract: The present invention relates to a hydrocracking catalyst for hydrocarbon oil comprising a support containing a framework-substituted zeolite-1 in which zirconium atoms and/or hafnium atoms form a part of a framework of an ultrastable y-type zeolite and a hydrogenative metal component carried thereon and a method for producing the same. The hydrocracking catalyst of the present invention makes it easy to diffuse heavy hydrocarbon oils such as VGO, DAO and the like into mesopores, is improved in a cracking activity and makes it possible to obtain a middle distillate at a high yield as compared with catalysts prepared by using zeolite comprising titanium and/or zirconium carried thereon.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: December 29, 2015
    Assignees: Saudi Arabian Oil Company, Japan Cooperation Center, Petroleum, JGC Catalysts and Chemicals Ltd.
    Inventors: Omer Refa Koseoglu, Adnan Al-Hajji, Ali Mahmood Al-Somali, Ali H. Al-Abdul'Al, Mishaal Al-Thukair, Masaru Ushio, Ryuzo Kuroda, Takashi Kameoka, Koji Nakano, Yuichi Takamori
  • Publication number: 20140190868
    Abstract: The invention relates to a method for optimizing layered catalytic processes. This is accomplished by testing various catalysts with a compound found in a feedstock to be tested, to determine the facility of the catalyst in hydrogenating, hydrosulfurizing, or hydrodenitrogenating the molecule, and hence the feedstock. In a preferred embodiment, the Double Bond Equivalence of the feedstock and molecule are determined, and catalysts are pre-selected based upon their known ability to work with materials of this DBE value.
    Type: Application
    Filed: January 7, 2014
    Publication date: July 10, 2014
    Applicants: JGC CATALYSTS AND CHEMICALS LTD., SAUDI ARABIAN OIL COMPANY
    Inventors: Omer Refa KOSEOGLU, Adnan Al-Hajji, Hendrik Muller, Masaru Ushio, Koji Nakano
  • Publication number: 20130319910
    Abstract: The invention relates to processes for removing impurities, such as asphalt, from whole crude oil. The invention is accomplished by first deasphalting a feedstock, followed by processing resulting DAO and asphalt fractions. The DAO fraction is hydrocracked, resulting in removal of sulfur and hydrocarbons which boil at temperatures over 370° C., and gasifying the asphalt portion.
    Type: Application
    Filed: May 29, 2013
    Publication date: December 5, 2013
    Inventors: Omer Refa KOSEOGLU, Masaru Ushio, Koji Nakano
  • Publication number: 20130175202
    Abstract: The present invention relates to a hydrocracking catalyst for hydrocarbon oil comprising a support containing a framework-substituted zeolite-1 in which zirconium atoms and/or hafnium atoms form a part of a framework of an ultrastable y-type zeolite and a hydrogenative metal component carried thereon and a method for producing the same. The hydrocracking catalyst of the present invention makes it easy to diffuse heavy hydrocarbon oils such as VGO, DAO and the like into mesopores, is improved in a cracking activity and makes it possible to obtain a middle distillate at a high yield as compared with catalysts prepared by using zeolite comprising titanium and/or zirconium carried thereon.
    Type: Application
    Filed: August 2, 2011
    Publication date: July 11, 2013
    Applicants: SAUDI ARABIAN OIL COMPANY, JAPAN COOPERATION CENTER, PETROLEUM, JGC CATALYSTS AND CHEMICALS LTD.
    Inventors: Omer Refa Koseoglu, Adnan Al-Hajji, Ali Mahmood Al-Somali, Ali H. Al-Abdul'Al, Mishaal Al-Thukair, Masaru Ushio, Ryuzo Kuroda, Takashi Kameoka, Koji Nakano, Yuichi Takamori
  • Publication number: 20130098802
    Abstract: In a hydrocracking process, the product from the first stage reactor passes through a steam stripper to remove hydrogen, H2S, NH3, light gases (C1-C4), naphtha and diesel products. The stripper bottoms are separated from hydrogen, H2S, NH3, light gases (C1-C4), naphtha, and diesel products and treated in a second stage reactor. The effluent stream from the second stage reactor, along with the stream of separated hydrogen, H2S, NH3, light gases (C1-C4), naphtha, and diesel products, are passed to a separation stage for separating petroleum fractions. Preferably, the effluent stream from the first stage reactor is passed through a steam generator prior to the steam stripping step. In an alternate embodiment, the effluent stream from the first stage reactor is passed through a vapor/liquid separator stripper vessel prior to the steam stripping step.
    Type: Application
    Filed: July 27, 2012
    Publication date: April 25, 2013
    Inventors: Omer Refa Koseoglu, Ali H. Al-Abdul'al, Masaru Ushio, Koji Nakano
  • Patent number: 8305623
    Abstract: In a copying machine having an image memory that stores image data, a DRAM control IC that repetitively reads out image data from the image memory, and an image forming section that forms the images for the specified number of copies, a write processing section having a number of pixels counter that counts the number of pixels included in the image data for the predetermined number of pages at the time of reading, a first memory that stores the count value for the nth copy, a second memory that stores the count value for the (n+1)th copy, and an image control CPU that compares the count value stored in the first memory with the count value stored in the second memory and thereby judges the occurrence of errors in the print process if the two counts are not equal to each other and carries out error processing.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: November 6, 2012
    Assignee: Konica Minolta Business Technologies, Inc.
    Inventor: Masaru Ushio
  • Patent number: 8148285
    Abstract: A catalytic composition for hydrotreating of hydrocarbons is made in which a metallic component for hydrogenation is carried on a carrier formed of zeolite Y with aluminum and titanium inserted therein and a porous inorganic oxide. The zeolite Y has: unit cell dimension in a range from 24.25 to 24.60 ?, crystallinity of 95% or more, specific surface area of 500 m2/g or more, total pore volume of a group of pores each having a diameter of 600 ? or below in a range from 0.45 to 0.70 ml/g, pore volume of a group of pores each having a diameter in a range from 100 to 600 ? in a range from 0.10 to 0.40 ml/g, and pore volume of a group of pores each having a diameter in a range from 35 to 50 ? in a range 0.03 to 0.15 ml/g.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: April 3, 2012
    Assignees: Petroleum Energy Center, JGC Catalysts and Chemicals Ltd.
    Inventors: Ryuzo Kuroda, Masaru Ushio