Patents by Inventor Masashi Tsubuku

Masashi Tsubuku has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160284860
    Abstract: Defects in an oxide semiconductor film are reduced in a semiconductor device including the oxide semiconductor film. The electrical characteristics of a semiconductor device including an oxide semiconductor film are improved. The reliability of a semiconductor device including an oxide semiconductor film is improved. A semiconductor device including an oxide semiconductor layer; a metal oxide layer in contact with the oxide semiconductor layer, the metal oxide layer including an In-M oxide (M is Ti, Ga, Y, Zr, La, Ce, Nd, or Hf); and a conductive layer in contact with the metal oxide layer, the conductive layer including copper, aluminum, gold, or silver is provided. In the semiconductor device, y/(x+y) is greater than or equal to 0.75 and less than 1 where the atomic ratio of In to M included in the metal oxide layer is In:M=x:y.
    Type: Application
    Filed: June 6, 2016
    Publication date: September 29, 2016
    Inventors: Noritaka ISHIHARA, Masashi OOTA, Masashi TSUBUKU, Masami JINTYOU, Yukinori SHIMA, Junichi KOEZUKA, Yasuharu HOSAKA, Shunpei YAMAZAKI
  • Patent number: 9437743
    Abstract: An object is to provide a method for manufacturing a semiconductor device without exposing a specific layer to moisture or the like at all. A thin film element is manufactured in such a manner that a first film, a second film, and a third film are stacked in this order; a resist mask is formed over the third film; a mask layer is formed by etching the third film with the use of the resist mask; the resist mask is removed; a second layer and a first layer are formed by performing dry etching on the second film and the first film with the use of the mask layer; a fourth film is formed to cover at least the second layer and the first layer; and sidewall layers are formed to cover at least the entire side surfaces of the first layer by performing etch back on the fourth film.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: September 6, 2016
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Takafumi Mizoguchi, Kojiro Shiraishi, Masashi Tsubuku
  • Patent number: 9431546
    Abstract: A transistor includes a gate, a source, and a drain, the gate is electrically connected to the source or the drain, a first signal is input to one of the source and the drain, and an oxide semiconductor layer whose carrier concentration is 5×1014/cm3 or less is used for a channel formation layer. A capacitor includes a first electrode and a second electrode, the first electrode is electrically connected to the other of the source and the drain of the transistor, and a second signal which is a clock signal is input to the second electrode. A voltage of the first signal is stepped up or down to obtain a third signal which is output as an output signal through the other of the source and the drain of the transistor.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: August 30, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hiroyuki Miyake, Masashi Tsubuku, Kosei Noda
  • Patent number: 9425217
    Abstract: Defects in an oxide semiconductor film are reduced in a semiconductor device including the oxide semiconductor film. The electrical characteristics of a semiconductor device including an oxide semiconductor film are improved. The reliability of a semiconductor device including an oxide semiconductor film is improved. A semiconductor device including an oxide semiconductor layer; a metal oxide layer in contact with the oxide semiconductor layer, the metal oxide layer including an In-M oxide (M is Ti, Ga, Y, Zr, La, Ce, Nd, or Hf); and a conductive layer in contact with the metal oxide layer, the conductive layer including copper, aluminum, gold, or silver is provided. In the semiconductor device, y/(x+y) is greater than or equal to 0.75 and less than 1 where the atomic ratio of In to M included in the metal oxide layer is In:M=x:y.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: August 23, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Noritaka Ishihara, Masashi Oota, Masashi Tsubuku, Masami Jintyou, Yukinori Shima, Junichi Koezuka, Yasuharu Hosaka, Shunpei Yamazaki
  • Publication number: 20160240694
    Abstract: An oxide semiconductor film which has more stable electric conductivity is provided. The oxide semiconductor film comprises a crystalline region. The oxide semiconductor film has a first peak of electron diffraction intensity with a full width at half maximum of greater than or equal to 0.4 nm?1 and less than or equal to 0.7 nm?1 in a region where a magnitude of a scattering vector is greater than or equal to 3.3 nm?1 and less than or equal to 4.1 nm?1. The oxide semiconductor film has a second peak of electron diffraction intensity with a full width at half maximum of greater than or equal to 0.45 nm?1 and less than or equal to 1.4 nm?1 in a region where a magnitude of a scattering vector is greater than or equal to 5.5 nm?1 and less than or equal to 7.1 nm?1.
    Type: Application
    Filed: April 25, 2016
    Publication date: August 18, 2016
    Inventors: Shunpei YAMAZAKI, Masashi TSUBUKU, Kengo AKIMOTO, Hiroki OHARA, Tatsuya HONDA, Takatsugu OMATA, Yusuke NONAKA, Masahiro TAKAHASHI, Akiharu MIYANAGA
  • Patent number: 9419020
    Abstract: An object is to obtain a semiconductor device having a high sensitivity in detecting signals and a wide dynamic range, using a thin film transistor in which an oxide semiconductor layer is used. An analog circuit is formed with the use of a thin film transistor including an oxide semiconductor which has a function as a channel formation layer, has a hydrogen concentration of 5×1019 atoms/cm3 or lower, and substantially functions as an insulator in the state where no electric field is generated. Thus, a semiconductor device having a high sensitivity in detecting signals and a wide dynamic range can be obtained.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: August 16, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Atsushi Hirose, Masashi Tsubuku, Kosei Noda
  • Publication number: 20160232868
    Abstract: In a liquid crystal display device including a plurality of pixels in a display portion and configured to performed display in a plurality of frame periods, each of the frame periods includes a writing period and a holding period, and after an image signal is input to each of the plurality of pixels in the writing period, a transistor included in each of the plurality of pixels is turned off and the image signal is held for at least 30 seconds in the holding period. The pixel includes a semiconductor layer including an oxide semiconductor layer, and the oxide semiconductor layer has a carrier concentration of less than 1×1014/cm3.
    Type: Application
    Filed: April 21, 2016
    Publication date: August 11, 2016
    Inventors: Shunpei YAMAZAKI, Ryo ARASAWA, Jun KOYAMA, Masashi TSUBUKU, Kosei NODA
  • Publication number: 20160225772
    Abstract: A semiconductor device that can measure a minute current. The semiconductor device includes a first transistor, a second transistor, a node, and a capacitor. The first transistor includes an oxide semiconductor in a channel formation region. The node is electrically connected to a gate of the second transistor and a first terminal of the capacitor. The node is brought into an electrically floating state by turning off the first transistor after a potential V0 is supplied. Change in a potential VFN of the node over time is expressed by Formula (1). In Formula (1), t is elapsed time after the node is brought into the electrically floating state, ? is a constant with a unit of time, and ? is a constant greater than or equal to 0.4 and less than or equal to 0.6.
    Type: Application
    Filed: January 27, 2016
    Publication date: August 4, 2016
    Inventors: Masashi TSUBUKU, Kazuaki OHSHIMA, Masashi FUJITA, Daigo SHIMADA, Tsutomu MURAKAWA
  • Patent number: 9406706
    Abstract: It is an object to provide a manufacturing method of a structure of a thin film transistor including an oxide semiconductor film, in which threshold voltage at which a channel is formed is positive and as close to 0 V as possible. A protective insulating layer is formed to cover a thin film transistor including an oxide semiconductor layer that is dehydrated or dehydrogenated by first heat treatment, and second heat treatment at a temperature that is lower than that of the first heat treatment, in which the increase and decrease in temperature are repeated plural times, is performed, whereby a thin film transistor including an oxide semiconductor layer, in which threshold voltage at which a channel is formed is positive and as close to 0 V as possible without depending on the channel length, can be manufactured.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: August 2, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masashi Tsubuku, Shuhei Yoshitomi, Takahiro Tsuji, Miyuki Hosoba, Junichiro Sakata, Hiroyuki Tomatsu, Masahiko Hayakawa
  • Publication number: 20160217830
    Abstract: Provided is a highly reliable semiconductor device, a semiconductor device with a reduced circuit area, a memory element having favorable characteristics, a highly reliable memory element, or a memory element with increased storage capacity per unit volume. A semiconductor device includes a capacitor and a switching element. The capacitor includes a first electrode, a second electrode, and a dielectric. The dielectric is positioned between the first electrode and the second electrode. The switching element includes a first terminal and a second terminal. The first terminal is electrically connected to the first electrode. The following steps are sequentially performed: a first step of turning on the switching element in a first period, a second step of turning off the switching element in a second period, and a third step of turning on the switching element in a third period.
    Type: Application
    Filed: January 15, 2016
    Publication date: July 28, 2016
    Inventors: Masashi TSUBUKU, Masashi FUJITA
  • Publication number: 20160190176
    Abstract: An object is to obtain a semiconductor device having a high sensitivity in detecting signals and a wide dynamic range, using a thin film transistor in which an oxide semiconductor layer is used. An analog circuit is formed with the use of a thin film transistor including an oxide semiconductor which has a function as a channel formation layer, has a hydrogen concentration of 5×1019 atoms/cm3 or lower, and substantially functions as an insulator in the state where no electric field is generated. Thus, a semiconductor device having a high sensitivity in detecting signals and a wide dynamic range can be obtained.
    Type: Application
    Filed: March 8, 2016
    Publication date: June 30, 2016
    Inventors: Shunpei YAMAZAKI, Jun KOYAMA, Atsushi HIROSE, Masashi TSUBUKU, Kosei NODA
  • Publication number: 20160190232
    Abstract: A highly reliable semiconductor device including an oxide semiconductor is provided. Provided is a semiconductor device including an oxide semiconductor layer, an insulating layer in contact with the oxide semiconductor layer, a gate electrode layer overlapping with the oxide semiconductor layer, and a source electrode layer and a drain electrode layer electrically connected to the oxide semiconductor layer. The oxide semiconductor layer includes a first region having a crystal whose size is less than or equal to 10 nm and a second region which overlaps with the insulating layer with the first region provided therebetween and which includes a crystal part whose c-axis is aligned in a direction parallel to a normal vector of the surface of the oxide semiconductor layer.
    Type: Application
    Filed: March 8, 2016
    Publication date: June 30, 2016
    Inventors: Shunpei YAMAZAKI, Masahiro TAKAHASHI, Takuya HIROHASHI, Masashi TSUBUKU, Masashi OOTA
  • Patent number: 9379136
    Abstract: When a transistor having bottom gate bottom contact structure is manufactured, for example, a conductive layer constituting a source and a drain has a three-layer structure and two-step etching is performed. In the first etching process, an etching method in which the etching rates for at least the second film and the third film are high is employed, and the first etching process is performed until at least the first film is exposed. In the second etching process, an etching method in which the etching rate for the first film is higher than that in the first etching process and the etching rate for a “layer provided below and in contact with the first film” is lower than that in the first etching process is employed. The side wall of the second film is slightly etched when a resist mask is removed after the second etching process.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: June 28, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shinya Sasagawa, Hitoshi Nakayama, Masashi Tsubuku, Daigo Shimada
  • Publication number: 20160181432
    Abstract: Reducing hydrogen concentration in a channel formation region of an oxide semiconductor is important in stabilizing threshold voltage of a transistor including an oxide semiconductor and improving reliability. Hence, hydrogen is attracted from the oxide semiconductor and trapped in a region of an insulating film which overlaps with a source region and a drain region of the oxide semiconductor. Impurities such as argon, nitrogen, carbon, phosphorus, or boron are added to the region of the insulating film which overlaps with the source region and the drain region of the oxide semiconductor, thereby generating a defect. Hydrogen in the oxide semiconductor is attracted to the defect in the insulating film. The defect in the insulating film is stabilized by the presence of hydrogen.
    Type: Application
    Filed: February 25, 2016
    Publication date: June 23, 2016
    Inventors: Masashi TSUBUKU, Yusuke NONAKA, Noritaka ISHIHARA, Masashi OOTA, Hideyuki KISHIDA
  • Patent number: 9368641
    Abstract: It is an object to manufacture a highly reliable display device using a thin film transistor having favorable electric characteristics and high reliability as a switching element. In a bottom gate thin film transistor including an amorphous oxide semiconductor, an oxide conductive layer having a crystal region is formed between an oxide semiconductor layer which has been dehydrated or dehydrogenated by heat treatment and each of a source electrode layer and a drain electrode layer which are formed using a metal material. Accordingly, contact resistance between the oxide semiconductor layer and each of the source electrode layer and the drain electrode layer can be reduced; thus, a thin film transistor having favorable electric characteristics and a highly reliable display device using the thin film transistor can be provided.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: June 14, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Toshinari Sasaki, Junichiro Sakata, Masashi Tsubuku
  • Patent number: 9368082
    Abstract: In a liquid crystal display device including a plurality of pixels in a display portion and configured to performed display in a plurality of frame periods, each of the frame periods includes a writing period and a holding period, and after an image signal is input to each of the plurality of pixels in the writing period, a transistor included in each of the plurality of pixels is turned off and the image signal is held for at least 30 seconds in the holding period. The pixel includes a semiconductor layer including an oxide semiconductor layer, and the oxide semiconductor layer has a carrier concentration of less than 1×1014/cm3.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: June 14, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Ryo Arasawa, Jun Koyama, Masashi Tsubuku, Kosei Noda
  • Publication number: 20160160342
    Abstract: A method for manufacturing a sputtering target with which an oxide semiconductor film with a small amount of defects can be formed is provided. Alternatively, an oxide semiconductor film with a small amount of defects is formed. A method for manufacturing a sputtering target is provided, which includes the steps of: forming a polycrystalline In-M-Zn oxide (M represents a metal chosen among aluminum, titanium, gallium, yttrium, zirconium, lanthanum, cesium, neodymium, and hafnium) powder by mixing, sintering, and grinding indium oxide, an oxide of the metal, and zinc oxide; forming a mixture by mixing the polycrystalline In-M-Zn oxide powder and a zinc oxide powder; forming a compact by compacting the mixture; and sintering the compact.
    Type: Application
    Filed: January 26, 2016
    Publication date: June 9, 2016
    Inventors: Shunpei YAMAZAKI, Masashi TSUBUKU, Masashi OOTA, Yoichi KUROSAWA, Noritaka ISHIHARA
  • Publication number: 20160155859
    Abstract: A display device including a pixel having a memory. The pixel includes at least a display element, a capacitor, an inverter, and a switch. The switch is controlled with a signal held in the capacitor and a signal output from the inverter so that voltage is supplied to the display element. The inverter and the switch can be constituted by transistors with the same polarity. A semiconductor layer included in the pixel may be formed using a light-transmitting material. Moreover, a gate electrode, a drain electrode, and a capacitor electrode may be formed using a light-transmitting conductive layer. The pixel is formed using a light-transmitting material in such a manner, whereby the display device can be a transmissive display device while including a pixel having a memory.
    Type: Application
    Filed: February 8, 2016
    Publication date: June 2, 2016
    Inventors: Hajime KIMURA, Kengo AKIMOTO, Masashi TSUBUKU, Toshinari SASAKI
  • Patent number: 9349875
    Abstract: A semiconductor device includes a first oxide semiconductor film, a second oxide semiconductor film over the first oxide semiconductor film, a source electrode in contact with the second oxide semiconductor film, a drain electrode in contact with the second oxide semiconductor film, a metal oxide film over the second oxide semiconductor film, the source electrode, and the drain electrode, a gate insulating film over the metal oxide film, and a gate electrode over the gate insulating film. The metal oxide film contains M (M represents Ti, Ga, Y, Zr, La, Ce, Nd, or Hf) and Zn. The metal oxide film includes a portion where x/(x+y) is greater than 0.67 and less than or equal to 0.99 when a target has an atomic ratio of M:Zn=x:y.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: May 24, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masashi Tsubuku, Toshihiko Takeuchi, Yasumasa Yamane, Masashi Oota
  • Patent number: 9343584
    Abstract: An object is to provide a semiconductor device including an oxide semiconductor film, which has stable electrical characteristics and high reliability. A stack of first and second material films is formed by forming the first material film (a film having a hexagonal crystal structure) having a thickness of 1 nm to 10 nm over an insulating surface and forming the second material film having a hexagonal crystal structure (a crystalline oxide semiconductor film) using the first material film as a nucleus. As the first material film, a material film having a wurtzite crystal structure (e.g., gallium nitride or aluminum nitride) or a material film having a corundum crystal structure (?-Al2O3, ?-Ga2O3, In2O3, Ti2O3, V2O3, Cr2O3, or ?-Fe2O3) is used.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: May 17, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yusuke Nonaka, Takayuki Inoue, Masashi Tsubuku, Kengo Akimoto, Akiharu Miyanaga