Patents by Inventor Masashige Moritoki

Masashige Moritoki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230079435
    Abstract: A memory cell array of the present disclosure includes a plurality of memory cells 11 arranged in a first direction and a second direction different from the first direction. Each of the memory cells 11 includes a resistance-variable nonvolatile memory element and a selection transistor TR electrically connected to the nonvolatile memory element. The selection transistor TR is formed in an active region 80 provided in a semiconductor layer 60. At least a part of the active region 80 is in contact with an element isolation region 81 provided in the semiconductor layer 60. A surface of the element isolation region 81 is located at a position lower than a surface of the active region 80.
    Type: Application
    Filed: January 29, 2021
    Publication date: March 16, 2023
    Inventors: Mikio OKA, Kazuki YAMAGUCHI, Masashi KINO, Takashige DOI, Masashige MORITOKI, Takashi WATANABE, Norikazu KASAHARA
  • Publication number: 20210389395
    Abstract: A magnetoresistive element of the present disclosure includes a multilayer structure made up of at least a fixed magnetization layer, an intermediate layer and a storage layer. A first side wall is formed on a side wall of the multilayer structure. A second side wall is formed on the first side wall. The first side wall is made of an insulating material, for instance SiN or AlOx, that prevents intrusion of hydrogen. The second side wall is made of a hydrogen storage material, for instance titanium.
    Type: Application
    Filed: October 30, 2019
    Publication date: December 16, 2021
    Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Katsumi SUEMITSU, Makoto UEKI, Masashige MORITOKI
  • Patent number: 9660079
    Abstract: To improve performance of a semiconductor device. Over a semiconductor substrate, a gate electrode is formed via a first insulating film for a gate insulating film, and a second insulating film extends from over a side wall of the gate electrode to over the semiconductor substrate. Over the semiconductor substrate in a part exposed from the second insulating film, a semiconductor layer, which is an epitaxial layer for source/drain, is formed. The second insulating film has a part extending over the side wall of the gate electrode and a part extending over the semiconductor substrate, and a part of the semiconductor layer lies over the second insulating film in the part extending over the semiconductor substrate.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: May 23, 2017
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Kenichi Yamamoto, Hiromi Sasaki, Tomotake Morita, Masashige Moritoki
  • Patent number: 9478547
    Abstract: Dishing of a plate of a capacitor is suppressed in a structure where the top of the plate is flush with a top of an interconnection. Double interlayer dielectric films are used to form a first recess and a second recess. The second recess has an opening on the bottom of the first recess. The first and second recesses are used to form a capacitor. The lower electrode of the capacitor has a bottom part along the bottom of the first recess. The lower electrode further includes a sidewall part having an upper end that projects along a side face of the second recess from the opening of the second recess up to a position between the opening of the second recess and a top of the upper interlayer dielectric film (the upper one of the double interlayer dielectric films).
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: October 25, 2016
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Hiroyuki Kunishima, Masashige Moritoki, Toshiji Taiji, Youichi Yamamoto
  • Publication number: 20160204258
    Abstract: To improve performance of a semiconductor device. Over a semiconductor substrate, a gate electrode is formed via a first insulating film for a gate insulating film, and a second insulating film extends from over a side wall of the gate electrode to over the semiconductor substrate. Over the semiconductor substrate in a part exposed from the second insulating film, a semiconductor layer, which is an epitaxial layer for source/drain, is formed. The second insulating film has a part extending over the side wall of the gate electrode and a part extending over the semiconductor substrate, and a part of the semiconductor layer lies over the second insulating film in the part extending over the semiconductor substrate.
    Type: Application
    Filed: March 21, 2016
    Publication date: July 14, 2016
    Inventors: Kenichi YAMAMOTO, Hiromi SASAKI, Tomotake MORITA, Masashige MORITOKI
  • Patent number: 9293562
    Abstract: To improve performance of a semiconductor device. Over a semiconductor substrate, a gate electrode is formed via a first insulating film for a gate insulating film, and a second insulating film extends from over a side wall of the gate electrode to over the semiconductor substrate. Over the semiconductor substrate in a part exposed from the second insulating film, a semiconductor layer, which is an epitaxial layer for source/drain, is formed. The second insulating film has a part extending over the side wall of the gate electrode and a part extending over the semiconductor substrate, and a part of the semiconductor layer lies over the second insulating film in the part extending over the semiconductor substrate.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: March 22, 2016
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Kenichi Yamamoto, Hiromi Sasaki, Tomotake Morita, Masashige Moritoki
  • Publication number: 20150357335
    Abstract: Dishing of a plate of a capacitor is suppressed in a structure where the top of the plate is flush with a top of an interconnection. Double interlayer dielectric films are used to form a first recess and a second recess. The second recess has an opening on the bottom of the first recess. The first and second recesses are used to form a capacitor. The lower electrode of the capacitor has a bottom part along the bottom of the first recess. The lower electrode further includes a sidewall part having an upper end that projects along a side face of the second recess from the opening of the second recess up to a position between the opening of the second recess and a top of the upper interlayer dielectric film (the upper one of the double interlayer dielectric films).
    Type: Application
    Filed: June 3, 2015
    Publication date: December 10, 2015
    Inventors: Hiroyuki Kunishima, Masashige Moritoki, Toshiji Taiji, Youichi Yamamoto
  • Publication number: 20150348973
    Abstract: The charge retention characteristics of a semiconductor integrated circuit (IC) device are improved. A semiconductor integrated circuit (IC) device SM includes an n?-type semiconductor region that is formed, on an end of a gate electrode, on the main side of a semiconductor substrate, an n+-type semiconductor region that is provided on the main side of the semiconductor substrate and is formed on a silicon film having a top surface, and a side wall insulating film covering the side wall of the gate electrode and a part of the top surface of the silicon film. The semiconductor integrated circuit (IC) device further includes a silicide film formed on the top surface of the silicon film exposed from the side wall insulating film. The n+-type semiconductor region has the same conductivity type as the n?-type semiconductor region and has a higher concentration than the n?-type semiconductor region.
    Type: Application
    Filed: May 13, 2015
    Publication date: December 3, 2015
    Inventors: Masashige MORITOKI, Kenichi YAMAMOTO
  • Publication number: 20150263133
    Abstract: To improve performance of a semiconductor device. Over a semiconductor substrate, a gate electrode is formed via a first insulating film for a gate insulating film, and a second insulating film extends from over a side wall of the gate electrode to over the semiconductor substrate. Over the semiconductor substrate in a part exposed from the second insulating film, a semiconductor layer, which is an epitaxial layer for source/drain, is formed. The second insulating film has a part extending over the side wall of the gate electrode and a part extending over the semiconductor substrate, and a part of the semiconductor layer lies over the second insulating film in the part extending over the semiconductor substrate.
    Type: Application
    Filed: June 2, 2015
    Publication date: September 17, 2015
    Inventors: Kenichi YAMAMOTO, Hiromi SASAKI, Tomotake MORITA, Masashige MORITOKI
  • Patent number: 9064889
    Abstract: To improve performance of a semiconductor device. Over a semiconductor substrate, a gate electrode is formed via a first insulating film for a gate insulating film, and a second insulating film extends from over a side wall of the gate electrode to over the semiconductor substrate. Over the semiconductor substrate in a part exposed from the second insulating film, a semiconductor layer, which is an epitaxial layer for source/drain, is formed. The second insulating film has a part extending over the side wall of the gate electrode and a part extending over the semiconductor substrate, and a part of the semiconductor layer lies over the second insulating film in the part extending over the semiconductor substrate.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: June 23, 2015
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Kenichi Yamamoto, Hiromi Sasaki, Tomotake Morita, Masashige Moritoki
  • Publication number: 20140077288
    Abstract: To improve performance of a semiconductor device. Over a semiconductor substrate, a gate electrode is formed via a first insulating film for a gate insulating film, and a second insulating film extends from over a side wall of the gate electrode to over the semiconductor substrate. Over the semiconductor substrate in apart exposed from the second insulating film, a semiconductor layer, which is an epitaxial layer for source/drain, is formed. The second insulating film has a part extending over the side wall of the gate electrode and a part extending over the semiconductor substrate, and a part of the semiconductor layer lies over the second insulating film in the part extending over the semiconductor substrate.
    Type: Application
    Filed: July 30, 2013
    Publication date: March 20, 2014
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Kenichi YAMAMOTO, Hiromi SASAKI, Tomotake MORITA, Masashige MORITOKI
  • Patent number: 8455925
    Abstract: To provide a structure of a semiconductor device that realizes an increase in a capacitor capacitance of a memory circuit to the maximum while inhibiting an increase in a contact resistance of a logic circuit, and a manufacture method thereof. When designating the number of layers of the local interconnect layers having wiring that makes up a logic circuit area as M and designating the number of layers of the local interconnect layers having wiring that makes up the memory circuit as N (M and N are natural numbers and satisfy M>N), capacitance elements are provided over the interconnect layers comprised of (M?N) layers or (M?N+1) layers.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: June 4, 2013
    Assignee: Renesas Electronic Coporation
    Inventors: Masashige Moritoki, Takamasa Itou, Takashi Ogura, Tsutomu Himukai, Shigeaki Shimizu
  • Patent number: 8143152
    Abstract: A semiconductor device 100 includes: a silicon substrate 102; a first gate 114a including a gate electrode 108 formed on the silicon substrate 102 and sidewalls 112 formed on the sidewalls of the gate electrode 108; a silicide layer 132 formed lateral to the sidewalls 112 of the first gate 114a on a surface of the silicon substrate 102; and a contact 164 which overlaps at least partially in plan view with the first gate 114a and reaches to the silicide layer 132 of the surface of the silicon substrate 102; wherein an insulator film is located between the contact 164 and the gate electrode 108 of the first gate 114a.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: March 27, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Masashige Moritoki
  • Publication number: 20110193136
    Abstract: To provide a structure of a semiconductor device that realizes an increase in a capacitor capacitance of a memory circuit to the maximum while inhibiting an increase in a contact resistance of a logic circuit, and a manufacture method thereof. When designating the number of layers of the local interconnect layers having wiring that makes up a logic circuit area as M and designating the number of layers of the local interconnect layers having wiring that makes up the memory circuit as N (M and N are natural numbers and satisfy M>N), capacitance elements are provided over the interconnect layers comprised of (M?N) layers or (M?N+1) layers.
    Type: Application
    Filed: February 9, 2011
    Publication date: August 11, 2011
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Masashige MORITOKI, Takamasa ITOU, Takashi OGURA, Tsutomu HIMUKAI, Shigeaki SHIMIZU
  • Patent number: 7947568
    Abstract: A method of manufacturing a semiconductor device includes a process of forming a STI trench in a substrate, a process of forming a thermal oxide film on a sidewall and a bottom surface of the STI trench, a process of performing a plasma treatment on a surface of the thermal oxide film that is located at a bottom portion of the STI trench, and a process of forming an insulating film in the STI trench using a CVD method.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: May 24, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Keiji Sakamoto, Takashi Ogura, Masashige Moritoki
  • Patent number: 7879680
    Abstract: Photoresist on a metal is removed with less oxidation of the metal surface by the invented ashing. During process, the matching of oxygen gas ratio and wafer temperature under downstream plasma which means no RF bias plasma is controlled for oxidation amount not to depend on ashing time with required photo resist rate in manufacturing.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: February 1, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Hiromi Sasaki, Masashige Moritoki
  • Patent number: 7786005
    Abstract: An increase of the via resistance resulted due to the presence of the altered layer that has been formed and grown after the formation of the via hole can be effectively prevented, thereby providing an improved reliability of the semiconductor device. A method includes: forming a TiN film on the semiconductor substrate; forming an interlayer insulating film on a surface of the TiN film; forming a resist film on a surface of the interlayer insulating film; etching the semiconductor substrate having the resist film formed thereon to form an opening, thereby partially exposing the TiN film; plasma-processing the exposed portion of the TiN film to remove an altered layer formed in the exposed portion of the TiN film; and stripping the resist film via a high temperature-plasma processing.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: August 31, 2010
    Assignee: NEC Electronics Corporation
    Inventors: Kenichi Yamamoto, Masashige Moritoki, Takashi Shimane, Kazumi Saito, Hiroaki Tomimori, Takamasa Itou, Kousei Ushijima, Katsuro Tateyama
  • Publication number: 20100167493
    Abstract: A method of manufacturing a semiconductor device includes a process of forming a STI trench in a substrate, a process of forming a thermal oxide film on a sidewall and a bottom surface of the STI trench, a process of performing a plasma treatment on a surface of the thermal oxide film that is located at a bottom portion of the STI trench, and a process of forming an insulating film in the STI trench using a CVD method
    Type: Application
    Filed: August 27, 2009
    Publication date: July 1, 2010
    Applicant: NEC ELECTRONICS CORPORATION
    Inventors: Keiji SAKAMOTO, Takashi OGURA, Masashige MORITOKI
  • Publication number: 20100015789
    Abstract: A semiconductor device 100 includes: a silicon substrate 102; a first gate 114a including a gate electrode 108 formed on the silicon substrate 102 and sidewalls 112 formed on the sidewalls of the gate electrode 108; a silicide layer 132 formed lateral to the sidewalls 112 of the first gate 114a on a surface of the silicon substrate 102; and a contact 164 which overlaps at least partially in plan view with the first gate 114a and reaches to the silicide layer 132 of the surface of the silicon substrate 102; wherein an insulator film is located between the contact 164 and the gate electrode 108 of the first gate 114a.
    Type: Application
    Filed: July 15, 2009
    Publication date: January 21, 2010
    Applicant: NEC ELECTRONICS CORPORATION
    Inventor: Masashige MORITOKI
  • Patent number: 7646096
    Abstract: A semiconductor device having good production stability and excellent in a contact property between an antireflection film on an Al contained metal film and a conductive plug. The device includes a substrate, an insulating interlayer, and a multi-layer structure. The insulating interlayer is formed in the upper portion of the substrate. The structure is provided on the insulating interlayer. A Ti film, a first TiN film, an AlCu film, a Ti film, a second TiN film, and an etching adjustment film are sequentially formed in the structure. The device includes an insulating interlayer and a conductive plug. The insulating interlayer is provided on the insulating interlayer and the structure. The conductive plug penetrates the insulating interlayer and the etching adjustment film, and an end surface of the conductive plug is located in the second TiN film. The conductive plug includes a Ti film, a TiN film, and a W film.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: January 12, 2010
    Assignee: NEC Electronics Corporation
    Inventors: Masashige Moritoki, Kouichi Konishi