Patents by Inventor Masataka Nonaka

Masataka Nonaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11254600
    Abstract: A glass panel unit manufacturing method includes a bonding step, a pressure reducing step, and a sealing step. The bonding step includes bonding together a first substrate including a wired glass pane and a second substrate including a non-wired glass pane with a first sealant in a frame shape to create an inner space. The pressure reducing step includes producing a reduced pressure in the inner space through an exhaust port that the first substrate has. The sealing step includes irradiating the second sealant with an infrared ray externally incident through the second substrate to seal the exhaust port up with the second sealant that has melted.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: February 22, 2022
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Masataka Nonaka, Eiichi Uriu, Takeshi Shimizu, Haruhiko Ishikawa, Kazuya Hasegawa, Tasuku Ishibashi, Hiroyuki Abe
  • Patent number: 11236004
    Abstract: A manufacturing method of a glass panel for a glass panel unit includes a melting step, a spreading step, an annealing step, a cutting step, and a spacer disposition step. The spacer disposition step is a step of disposing spacers onto a glass sheet and is performed by a spacer disposition device prior to the cutting step.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: February 1, 2022
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Masataka Nonaka, Eiichi Uriu, Kazuya Hasegawa, Tasuku Ishibashi, Hiroyuki Abe
  • Patent number: 11230878
    Abstract: A glass panel unit assembly includes: a pair of glass substrates arranged to face each other; a peripheral wall; a partition; an air passage; and an evacuation port. The peripheral wall has a frame shape and is disposed between the pair of glass substrates. The partition partitions an internal space, surrounded with the pair of glass substrates and the peripheral wall, into a first space and a second space. The air passage connects the first space and the second space together. The evacuation port connects the second space to an external environment. The partition is lower in height than the peripheral wall.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: January 25, 2022
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Tasuku Ishibashi, Eiichi Uriu, Kazuya Hasegawa, Hiroyuki Abe, Masataka Nonaka, Takeshi Shimizu, Haruhiko Ishikawa
  • Publication number: 20210396072
    Abstract: A glass panel unit includes: a first substrate including a first glass panel; a second substrate including a second glass panel; and a frame-shaped sealing portion that is hermetically bonded to the first substrate and the second substrate. The sealing portion creates an evacuated space between the first substrate and the second substrate. When viewed from a region where the second substrate is positioned with respect to the first substrate, the first substrate includes a part arranged to stick out of an edge of the second substrate. The part includes a mounting portion used to mount the glass panel unit onto a vehicle.
    Type: Application
    Filed: September 25, 2019
    Publication date: December 23, 2021
    Inventors: Kenji HASEGAWA, Eiichi URIU, Kazuya HASEGAWA, Tasuku ISHIBASHI, Hiroyuki ABE, Masataka NONAKA, Takeshi SHIMIZU, Haruhiko ISHIKAWA
  • Publication number: 20210381302
    Abstract: A glass panel unit includes: a first panel including a glass pane; a second panel including another glass pane; a sealing portion; an exhaust port; and a printed portion. The second panel is arranged to face the first panel. The sealing portion is formed in a frame shape and hermetically bonds respective peripheral edge portions of the first and second panels to create an evacuated, hermetically sealed space between the first panel and the second panel. The exhaust port is provided for one panel selected from the first and second panels. A port sealing member hermetically seals the exhaust port. The printed portion is provided for the other panel selected from the first and second panels. The printed portion is located in an area, facing the exhaust port, of one surface of the other panel. The one surface either faces toward, or faces away from, the hermetically sealed space.
    Type: Application
    Filed: August 27, 2019
    Publication date: December 9, 2021
    Inventors: Kenji HASEGAWA, Eiichi URIU, Kazuya HASEGAWA, Tasuku ISHIBASHI, Hiroyuki ABE, Masataka NONAKA, Takeshi SHIMIZU, Haruhiko ISHIKAWA
  • Patent number: 11193322
    Abstract: A manufacturing method of a glass panel unit of the present invention includes a bonding step, a pressure reduction step, and a sealing step. In the bonding step, a first substrate and a second substrate are hermetically bonded together with a seal having a frame shape. In the pressure reduction step, a pressure in an inside space formed between the first substrate and the second substrate is reduced through an exhaust port. In the sealing step, sealant melted is dropped toward the exhaust port, thereby sealing the exhaust port with the sealant.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: December 7, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Kazuya Hasegawa, Masataka Nonaka, Hiroyuki Abe, Tasuku Ishibashi, Eiichi Uriu
  • Patent number: 11187027
    Abstract: A manufacturing method of a glass panel unit includes an adhesive disposing step, a pillar disposition step of disposing a plurality of pillars on the first panel. Each of the plurality of pillars includes a plurality of resin layers to stacked on one another. In each of the plurality of pillars, a contact area being in contact with the first panel and being included in the resin layer which is in contact with the first panel is different from a contact area being in contact with the second panel and being included in the resin layer which is in contact with the second panel.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: November 30, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Kazuya Hasegawa, Masataka Nonaka, Hiroyuki Abe, Tasuku Ishibashi, Eiichi Uriu
  • Patent number: 11162297
    Abstract: A glass panel unit assembly includes: glass substrates; a peripheral wall having a frame shape and disposed between the glass substrates; a partition; an evacuation port; and a plurality of air passages. The partition partitions an internal space into an evacuation space, a ventilation space, and a coupling space. The evacuation port connects the ventilation space to an external environment. The plurality of air passages includes: a first air passage connecting the evacuation space to the coupling space; and a second air passage connecting the coupling space to the ventilation space. The second air passage includes a particular air passage having a larger dimension than any of the first air passage.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: November 2, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Tasuku Ishibashi, Eiichi Uriu, Kazuya Hasegawa, Hiroyuki Abe, Masataka Nonaka, Takeshi Shimizu, Haruhiko Ishikawa
  • Patent number: 11148971
    Abstract: A gas adsorption unit includes a getter, a package encapsulating the getter, and a low-melting member. The low-melting member is heated, and thereby melted, at a temperature lower than a melting point of the package to bond a connector including the low-melting member onto the package. Next, the low-melting member that has melted is cooled and cured. Then, thermal stress resulting from a difference in thermal expansion coefficient between the package and the connector is caused to the package connected to the connector, thereby breaking the package open.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: October 19, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Hiroyuki Abe, Eiichi Uriu, Kazuya Hasegawa, Tasuku Ishibashi, Masataka Nonaka, Takeshi Shimizu, Haruhiko Ishikawa
  • Publication number: 20210300822
    Abstract: A glass panel unit includes a first glass pane, a second glass pane, a frame member, a vacuum space, and a gas adsorbing layer. The gas adsorbing layer is formed to cover at least one of the first glass pane or the second glass pane. The gas adsorbing layer contains a getter material.
    Type: Application
    Filed: June 19, 2019
    Publication date: September 30, 2021
    Inventors: Eiichi URIU, Hiroyuki ABE, Tasuku ISHIBASHI, Kazuya HASEGAWA, Masataka NONAKA, Takeshi SHIMIZU, Haruhiko ISHIKAWA
  • Patent number: 11117831
    Abstract: In s glass panel unit, a pitch of pillars is determined such that a distortion of a first panel and second panel is smaller than an interval between the first panel and the second panel. The distortion is calculated based on the interval between the first panel and the second panel, load loading compression fracture per one pillar of the multiple pillars, Young's moduli of the first panel and the second panel, thicknesses of the first panel and the second panel, and Poisson's ratios of the first panel and the second panel.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: September 14, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Hiroyuki Abe, Eiichi Uriu, Kazuya Hasegawa, Masataka Nonaka, Tasuku Ishibashi
  • Publication number: 20210270084
    Abstract: A method for manufacturing a glass panel unit includes an assembling step, a bonding step, a gas exhausting step, a sealing step, and an activating step. The bonding step includes melting a peripheral wall in a baking furnace at a first predetermined temperature to hermetically bond a first glass pane and a second glass pane together with the peripheral wall thus melted. The gas exhausting step includes exhausting a gas from an internal space through an exhaust port in the baking furnace to turn the internal space into a vacuum space. The sealing step includes locally heating to a temperature higher than a second predetermined temperature, and thereby melting, either a port sealing material or an exhaust pipe to seal the exhaust port and thereby obtain a work in progress. The activating step includes activating a gas adsorbent after the sealing step to obtain a glass panel unit.
    Type: Application
    Filed: June 19, 2019
    Publication date: September 2, 2021
    Inventors: Hiroyuki ABE, Eiichi URIU, Kazuya HASEGAWA, Tasuku ISHIBASHI, Masataka NONAKA, Takeshi SHIMIZU, Haruhiko ISHIKAWA
  • Publication number: 20210262280
    Abstract: A method for manufacturing a glass panel unit includes a glue arrangement step, an assembly forming step, a first melting step, an evacuation step, and a second melting step. The first melting step includes melting a hot glue, bonding a first and second panel with the glue, and forming an internal space. The first melting step includes a first temperature raising step, a first temperature maintaining step including maintaining the temperature of the assembly at a temperature equal to or higher than a softening point of the hot glue, and a first temperature lowering step, which are performed in this order. The first temperature lowering step includes: an anterior temperature lowering step including lowering the temperature of the assembly; a middle temperature maintaining step including maintaining the temperature of the assembly; and a posterior temperature lowering step including lowering the temperature of the assembly, which are performed in this order.
    Type: Application
    Filed: May 23, 2019
    Publication date: August 26, 2021
    Inventors: Kazuya HASEGAWA, Hiroyuki ABE, Haruhiko ISHIKAWA, Tasuku ISHIBASHI, Eiichi URIU, Takeshi SHIMIZU, Masataka NONAKA
  • Publication number: 20210254396
    Abstract: The assembling step is a step of preparing an assembly. The setting step is a step of setting a plurality of holder installation areas along an outer peripheral edge of the peripheral wall. The determining step is a step of determining a first area in which the slit and the peripheral wall are not adjacent to each other in the first area and a second area in which the slit and the peripheral wall are adjacent to each other. The installation step is a step of providing a holder in the first area without providing the holder in the second area.
    Type: Application
    Filed: May 24, 2019
    Publication date: August 19, 2021
    Inventors: Kazuya HASEGAWA, Hiroyuki ABE, Haruhiko ISHIKAWA, Tasuku ISHIBASHI, Eiichi URIU, Takeshi SHIMIZU, Masataka NONAKA
  • Publication number: 20210238088
    Abstract: A gas adsorption unit includes a getter, a package encapsulating the getter, and a low-melting member. The low-melting member is heated, and thereby melted, at a temperature lower than a melting point of the package to bond a connector including the low-melting member onto the package. Next, the low-melting member that has melted is cooled and cured. Then, thermal stress resulting from a difference in thermal expansion coefficient between the package and the connector is caused to the package connected to the connector, thereby breaking the package open.
    Type: Application
    Filed: June 19, 2018
    Publication date: August 5, 2021
    Inventors: Hiroyuki ABE, Eiichi URIU, Kazuya HASEGAWA, Tasuku ISHIBASHI, Masataka NONAKA, Takeshi SHIMIZU, Haruhiko ISHIKAWA
  • Publication number: 20210221737
    Abstract: A glass panel unit manufacturing method includes a bonding step, an insertion step, an evacuation step, and a sealing step. The bonding step includes bonding a first substrate having an evacuation port and a second substrate with a bonding material having a frame shape to form an internal space. The insertion step includes inserting a sealing material into the evacuation port. The evacuation step includes evacuating the internal space by connecting an exhaust device to the evacuation port and driving the exhaust device. The sealing step includes sealing the evacuation port with the sealing material while an evacuated state in the internal space is maintained. In the sealing step, a measured value by a pressure gauge is monitored while the sealing material is heated, softening of the sealing material is detected based on the transition of the measured value, and heating of the sealing material is stopped.
    Type: Application
    Filed: April 15, 2019
    Publication date: July 22, 2021
    Inventors: Takeshi SHIMIZU, Masataka NONAKA, Haruhiko ISHIKAWA, Eiichi URIU, Kazuya HASEGAWA, Tasuku ISHIBASHI, Hiroyuki ABE
  • Publication number: 20210207427
    Abstract: A glass panel unit manufacturing method includes a bonding step, an insertion step, an evacuation step, and a sealing step. The bonding step includes bonding a first substrate having an evacuation port and a second substrate together with a bonding material provided between the first substrate and the second substrate and having a frame shape to form an internal space. The insertion step includes inserting a sealing material into the evacuation port. The evacuation step includes evacuating the internal space through the exhaust passage. The sealing step includes deforming the sealing material by heating while an evacuated state in the internal space is maintained. In a state where the sealing material blocks ventilation between the evacuation port and the internal space, gas is supplied through the exhaust passage toward the evacuation port.
    Type: Application
    Filed: April 15, 2019
    Publication date: July 8, 2021
    Inventors: Takeshi SHIMIZU, Masataka NONAKA, Haruhiko ISHIKAWA, Eiichi URIU, Kazuya HASEGAWA, Tasuku ISHIBASHI, Hiroyuki ABE
  • Patent number: 11052563
    Abstract: A glass panel unit manufacturing method includes a punching step and a pillar mounting step. In the punching step, a punch punches at least one of a plurality of portions from a base material of a sheet to form at least one pillar. Each of the plurality of portions is surrounded by a corresponding one of a plurality of loop-shaped grooves in the base material. In the pillar mounting step, the at least one pillar is mounted on a surface of a first substrate including a glass pane.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: July 6, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Takeshi Shimizu, Hiroyuki Abe, Masataka Nonaka, Kazuya Hasegawa, Eiichi Uriu, Haruhiko Ishikawa, Tasuku Ishibashi, Hiroshi Takahashi, Shinobu Watanabe
  • Publication number: 20210178525
    Abstract: A pillar delivery method is a method for delivering a plurality of pillars onto a substrate, including a glass panel, to manufacture a glass panel unit. The pillar delivery method includes an irradiation step, a holding step, and a mounting step. The irradiation step includes setting, over a holder, a sheet for use to form pillars and irradiating the sheet with a laser beam to punch out the plurality of pillars. The holding step includes having the plurality of pillars, which have been punched out of the sheet, held by the holder. The mounting step includes picking up some or all of the plurality of pillars from the holder and mounting the pillars onto the substrate.
    Type: Application
    Filed: May 16, 2019
    Publication date: June 17, 2021
    Inventors: Masataka NONAKA, Eiichi URIU, Takeshi SHIMIZU, Kazuya HASEGAWA, Tasuku ISHIBASHI, Hiroyuki ABE, Haruhiko ISHIKAWA
  • Patent number: 11028637
    Abstract: A glass panel unit includes a first panel, a second panel, a sealing portion in a frame shape, a plurality of pillars, and a gas adsorbent. The sealing portion in the frame shape hermetically bonds respective peripheral edges of the first panel and the second panel together so as to create an evacuated, hermetically sealed space between the first panel and the second panel. The plurality of pillars and the gas adsorbent are arranged in the hermetically sealed space. The gas adsorbent contains: a non-metallic getter material having a porous structure with the ability to adsorb gas molecules; and a metallic getter material having a metallic surface with the ability to adsorb gas molecules.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: June 8, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Hiroyuki Abe, Eiichi Uriu, Kazuya Hasegawa, Tasuku Ishibashi, Masataka Nonaka, Takeshi Shimizu, Haruhiko Ishikawa