Patents by Inventor Masato Iyoki

Masato Iyoki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8813261
    Abstract: A scanning probe microscope including: a scanning probe microscope unit section including, a cantilever having a probe, a cantilever holder configured to fix the cantilever, a sample holder on which a sample is configured to be placed, a horizontal fine transfer mechanism configured to relatively scan a surface of the sample with the probe, a vertical fine transfer mechanism configured to control a distance between the probe and the sample surface, an optical microscope configured to observe the cantilever and the sample; a control device; an imaging device to which a viewing field, wider than that of the optical microscope and capable of observing the cantilever and the sample at the same time, can be set; and an image display device configured to display images observed by the optical microscope and the imaging device.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: August 19, 2014
    Assignee: Hitachi High-Tech Science Corporation
    Inventors: Masato Iyoki, Naokatsu Nosaka, Hiroumi Momota, Junji Kuwahara
  • Publication number: 20140059724
    Abstract: A scanning probe microscope including: a scanning probe microscope unit section including, a cantilever having a probe, a cantilever holder configured to fix the cantilever, a sample holder on which a sample is configured to be placed, a horizontal fine transfer mechanism configured to relatively scan a surface of the sample with the probe, a vertical fine transfer mechanism configured to control a distance between the probe and the sample surface, an optical microscope configured to observe the cantilever and the sample; a control device; an imaging device to which a viewing field, wider than that of the optical microscope and capable of observing the cantilever and the sample at the same time, can be set; and an image display device configured to display images observed by the optical microscope and the imaging device.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 27, 2014
    Applicant: HITACHI HIGH-TECH SCIENCE CORPORATION
    Inventors: Masato Iyoki, Naokatsu Nosaka, Hiroumi Momota, Junji Kuwahara
  • Patent number: 8601608
    Abstract: A microscope including both an atomic force microscope and a near-field optical microscope and capable of performing electrochemical measurements and a cantilever for the microscope are disclosed. A pointed light transmitting material employed as the probe of an atomic force microscope is coated with a metal layer; the metal layer is further coated with an insulating layer; the insulating layer is removed only at the distal end to expose the metal layer; the slightly exposed metal layer is employed as a working electrode; and the probe can be employed not only as the probe of the atomic force microscope and the near-field optical microscope but also as the electrode of an electrochemical microscope. Consequently, the microscope can have the functions of an atomic force microscope, a near-field optical microscope and an electrochemical microscope.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: December 3, 2013
    Assignees: Japan Science and Technology Agency, SII Nanotechnology Inc.
    Inventors: Kenichi Maruyama, Koji Suzuki, Masato Iyoki
  • Patent number: 8214915
    Abstract: Provided is a cantilever that is capable of bending and deforming in an active manner by itself. The cantilever includes: a lever portion having a proximal end that is supported by a main body part; and a resistor member that is formed in the cantilever and generates heat when a voltage is applied, to thereby deform the lever portion by thermal expansion due to the heat.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: July 3, 2012
    Assignee: SII NanoTechnology Inc.
    Inventors: Masatsugu Shigeno, Kazutoshi Watanabe, Masato Iyoki, Naoya Watanabe
  • Patent number: 8161568
    Abstract: A cantilever has a probe portion and a cantilever portion having a free end portion from which the probe portion extends. A displacement detecting portion detects a displacement of the cantilever portion according to an interaction between a sample and the probe portion. An electrode portion is connected to the displacement detecting portion. An insulation film is formed over at least one of the electrode portion and the displacement detecting portion. A functional coating in the form one of a conductive film, a magnetic film, and a film having a light intensity amplifying effect is disposed on the insulation film.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: April 17, 2012
    Assignee: SII NanoTechnology Inc.
    Inventors: Masato Iyoki, Naoya Watanabe
  • Patent number: 8115367
    Abstract: By resistor attached by a piezoelectric element, measurement with high accuracy is possible by strain of the piezoelectric element. A piezoelectric actuator includes the piezoelectric element which is formed into an arbitrary shape, polarized in an arbitrary direction, and includes electrodes provided on at least two surfaces opposed in a thickness direction thereof. The piezoelectric actuator also includes a driver power supply for applying a voltage between the electrodes to generate strain in the piezoelectric element, a driver power supply for applying a voltage to generate strain in the piezoelectric element, resistors provided on the electrodes through intermediation of insulators, and a displacement detection device connected with the resistors. The electrodes of the piezoelectric element on which the resistors are provided are set at a ground potential.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: February 14, 2012
    Assignee: SII NanoTechnology Inc.
    Inventor: Masato Iyoki
  • Patent number: 8058780
    Abstract: The cylindrical piezoelectric actuator which comprised a piezoelectric element which provided electrode in each of an inner peripheral face and an outer peripheral face which was cylindrical at least, and drive power supply to drive it. And the outer side electrode of the piezoelectric element covered the substantially circumferential outer face entirety and it was connected to a ground potential, and the electrode in the internal perimeter surface connected to drive power supply.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: November 15, 2011
    Assignee: SII NanoTechnology Inc.
    Inventor: Masato Iyoki
  • Patent number: 8024816
    Abstract: In detecting a displacement of a cantilever (2) by a displacement detecting mechanism (5) and allowing a probe (1) and a sample (8) to approach each other by at least one of a coarse-movement mechanism (13) and a vertical direction fine-movement mechanism (11) at the same time, an excitation mechanism (4) excites the cantilever (2) with a first excitation condition and the probe (1) and the sample (8) are allowed to approach each other with a first stop condition, and then the cantilever (2) is excited with a second excitation condition different from the first excitation condition, a second stop condition is set, and the probe (1) and the sample (8) are allowed to approach each other by the at least one of the vertical direction fine-movement mechanism (11) and the coarse-movement mechanism (13) until the second stop condition is satisfied.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: September 20, 2011
    Assignee: SII NanoTechnology Inc.
    Inventors: Masato Iyoki, Yoshiteru Shikakura, Masafumi Watanabe
  • Patent number: 7973942
    Abstract: There is provided an optical displacement detection mechanism in which, even if a measurement object changes, a detection sensitivity and a ratio of a noise are adjustable without depending on optical characteristics such as reflectivity, or a shape and mechanical characteristics of a measurement object, an influence of a thermal deformation of the measurement object by an irradiated light to the measurement object can be made small, and a measurement accuracy can be ensured under optimum conditions.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: July 5, 2011
    Assignee: SII Nano Technology Inc.
    Inventors: Masato Iyoki, Hiroyoshi Yamamoto, Kazutoshi Watanabe, Masatsugu Shigeno
  • Patent number: 7945965
    Abstract: The sensor has the self-detecting probe including a body portion, an elongated belt-like flexible substrate, connecting members, a resinous portion, and external contacts formed at the ends of the flexible substrate brought out of liquid. The probe further includes a cantilever whose base end is supported to the body portion, a strain resistive element whose resistance value varies according to the amount of displacement of the cantilever, and interconnects electrically connected with the strain resistive element. A probe tip is formed at the front end of the cantilever. The flexible substrate has an interconnect pattern sandwiched between two insulating sheets. The flexible substrate supports the body portion while the cantilever protrudes outwardly. At least one end of the flexible substrate is brought out of liquid. The connecting members connect the interconnects with the interconnect pattern.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: May 17, 2011
    Assignee: SII NanoTechnology Inc.
    Inventors: Naoya Watanabe, Masatsugu Shigeno, Masato Iyoki
  • Patent number: 7787133
    Abstract: The optical displacement-detecting mechanism has: a light source for irradiating a target for measurement with light; a light source-driving circuit for driving the light source; an optical detector made from a semiconductor for receiving light after the irradiation of the target for measurement by the light source and converting the light into an electric signal thereby to detect an intensity of light; and an amplifier including a current-voltage conversion circuit for performing current-to-voltage conversion on a detection signal of the optical detector with a predetermined amplification factor. In the optical displacement-detecting mechanism, a light source having a spectrum half width of 10 nm or larger is used, whereby the light source can be driven with an output power of 2 mW or larger without generating mode hop noise and optical feedback noise.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: August 31, 2010
    Assignee: SII NanoTechnology Inc.
    Inventors: Masato Iyoki, Hiroyoshi Yamamoto, Kazutoshi Watanabe
  • Publication number: 20100205697
    Abstract: In detecting a displacement of a cantilever (2) by a displacement detecting mechanism (5) and allowing a probe (1) and a sample (8) to approach each other by at least one of a coarse-movement mechanism (13) and a vertical direction fine-movement mechanism (11) at the same time, an excitation mechanism (4) excites the cantilever (2) with a first excitation condition and the probe (1) and the sample (8) are allowed to approach each other with a first stop condition, and then the cantilever (2) is excited with a second excitation condition different from the first excitation condition, a second stop condition is set, and the probe (1) and the sample (8) are allowed to approach each other by the at least one of the vertical direction fine-movement mechanism (11) and the coarse-movement mechanism (13) until the second stop condition is satisfied.
    Type: Application
    Filed: February 4, 2010
    Publication date: August 12, 2010
    Inventors: Masato Iyoki, Yoshiteru Shikakura, Masafumi Watanabe
  • Publication number: 20100154085
    Abstract: A microscope including both an atomic force microscope and a near-field optical microscope and capable of performing electrochemical measurements and a cantilever for the microscope are disclosed. A pointed light transmitting material employed as the probe of an atomic force microscope is coated with a metal layer; the metal layer is further coated with an insulating layer; the insulating layer is removed only at the distal end to expose the metal layer; the slightly exposed metal layer is employed as a working electrode; and the probe can be employed not only as the probe of the atomic force microscope and the near-field optical microscope but also as the electrode of an electrochemical microscope. Consequently, the microscope can have the functions of an atomic force microscope, a near-field optical microscope and an electrochemical microscope.
    Type: Application
    Filed: March 30, 2006
    Publication date: June 17, 2010
    Inventors: Kenichi Maruyama, Koji Suzuki, Masato Iyoki
  • Publication number: 20100132075
    Abstract: Provided is a self displacement sensing cantilever, including: a cantilever (4) that has a probe (2) at its tip and has a distal end portion (3) at its distal end; a displacement detecting portion (5) that is provided to the cantilever (4), for detecting a displacement of the cantilever (4); an electrode portion (6) that is connected to the displacement detecting portion (5) and is communicated with the distal end portion (3); and an insulation film (7) that is formed over at least one of the electrode portion (6) and the displacement detecting portion (5) of the cantilever (4), in which the insulation film (7) is applied a coating of an arbitrary functional material (8). As a result, measurement with a scanning probe microscope may be performed at the same time as projecting light.
    Type: Application
    Filed: November 24, 2009
    Publication date: May 27, 2010
    Inventors: Masato Iyoki, Naoya Watanabe
  • Publication number: 20100107284
    Abstract: Provided is a cantilever that is capable of bending and deforming in an active manner by itself. The cantilever includes: a lever portion having a proximal end that is supported by a main body part; and a resistor member that is formed in the cantilever and generates heat when a voltage is applied, to thereby deform the lever portion by thermal expansion due to the heat.
    Type: Application
    Filed: June 3, 2009
    Publication date: April 29, 2010
    Inventors: Masatsugu Shigeno, Kazutoshi Watanabe, Masato Iyoki, Naoya Watanabe
  • Patent number: 7614288
    Abstract: An inching mechanism for a scanning probe microscope capable of performing measurement with high precision while enhancing the scanning speed by a probe furthermore, and a scanning probe microscope comprising it. The inching mechanism for a scanning probe microscope which is provided in a scanning probe microscope (SPM) (1) having a stage (16) for mounting a sample S, and a probe (20) approaching closely to or touching the surface of the sample S, characterized in that the inching mechanism comprises a first drive section and a second drive section provided independently, a probe inching mechanism (26) having the first drive section and inching, by the first drive section, the probe (20) in the X direction and Y direction parallel with the surface of the sample S and intersecting each other, and a stage inching mechanism (27) having the second drive section and inching, by the second drive section, the stage (16) in the Z direction perpendicular to the surface of the sample S.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: November 10, 2009
    Assignee: SII Nano Technology Inc.
    Inventors: Masato Iyoki, Masatsugu Shigeno
  • Patent number: 7614287
    Abstract: A displacement detection mechanism for a scanning probe microscope capable of performing measurement quickly with high precision even if an objective lens or an illumination system is arranged above or below a sample or a cantilever, and a scanning probe microscope comprising it.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: November 10, 2009
    Assignee: SII NanoTechnology Inc.
    Inventors: Masato Iyoki, Hiroyoshi Yamamoto
  • Publication number: 20090265819
    Abstract: The sensor has the self-detecting probe including a body portion, an elongated belt-like flexible substrate, connecting members, a resinous portion, and external contacts formed at the ends of the flexible substrate brought out of liquid. The probe further includes a cantilever whose base end is supported to the body portion, a strain resistive element whose resistance value varies according to the amount of displacement of the cantilever, and interconnects electrically connected with the strain resistive element. A probe tip is formed at the front end of the cantilever. The flexible substrate has an interconnect pattern sandwiched between two insulating sheets. The flexible substrate supports the body portion while the cantilever protrudes outwardly. At least one end of the flexible substrate is brought out of liquid. The connecting members connect the interconnects with the interconnect pattern.
    Type: Application
    Filed: April 1, 2009
    Publication date: October 22, 2009
    Inventors: Naoya Watanabe, Masatsugu Shigeno, Masato Iyoki
  • Patent number: 7605368
    Abstract: A vibration-type cantilever holder holds a cantilever opposed to a sample. The holder supports a main body part of the cantilever at only its base end so that a probe at the free end of the cantilever can contact the sample. The holder has a cantilever-attaching stand on which the main body part is placed and fastened such that the cantilever is tilted at a predetermined angle with respect to the sample. A first vibration source is fastened to the cantilever-attaching stand and vibrates with a phase and an amplitude depending on a predetermined waveform signal, and the first vibration source is fastened at a first location to a holder main body. A second vibration source is fastened at a second location, which is spaced from the first location, to the holder main body and generates vibrations to offset vibrations traveling from the first vibration source to the cantilever-attaching stand and holder main body.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: October 20, 2009
    Assignee: SII NanoTechnology Inc.
    Inventors: Masatsugu Shigeno, Masato Iyoki
  • Publication number: 20090206707
    Abstract: The cylindrical piezoelectric actuator which comprised a piezoelectric element which provided electrode in each of an inner peripheral face and an outer peripheral face which was cylindrical at least, and drive power supply to drive it. And the outer side electrode of the piezoelectric element covered the substantially circumferential outer face entirety and it was connected to a ground potential, and the electrode in the internal perimeter surface connected to drive power supply.
    Type: Application
    Filed: February 11, 2009
    Publication date: August 20, 2009
    Inventor: Masato Iyoki